MAR 19, 2014 01:00 PM PDT

Engineering reproducible neural tissue from pluripotent stem cells

Presented At Neuroscience
Speakers
  • Assistant Professor, University of Victoria Engineering, Canada
    Biography
      Dr. Willerth currently holds a Canada Research Chair in Biomedical Engineering at the University of Victoria where she is dually appointed in the Department of Mechanical Engineering and Division of Medical Sciences. Her research group investigates how to engineer neural tissue by combining pluripotent stem cells, controlled drug delivery and biomaterial scaffolds . She has given invited talks at the Till and McCulloch Annual Meeting and at the 1st Annual British Columbia Stem Cell and Regeneration Medicine Initiative Meeting as well as presented at the 9th Annual World Biomaterials Congress in Chengdu, China. She belongs to both the Brain Research Centre (BRC) and the International Collaboration on Repair Discoveries (ICORD) - B.C. based organizations committed to treating brain diseases and disorders and finding long term treatments for the repair of spinal cord injuries respectively. Before accepting her faculty position, Dr. Willerth completed an NIH post doctoral fellowship at the University of California-Berkeley and graduate studies at Washington University.

    Abstract:

    The Willerth lab investigates how to engineer neural tissue by combining pluripotent stem cells, controlled drug delivery and biomaterial scaffolds. When generating these replacement tissues, we use both embryonic and induced pluripotent stem cells as these cells can become any cell type found in the body, including those cells found in the nervous system. Our recent projects have used human induced pluripotent stem cells (hiPSCs), which are adult cells reprogrammed back into an embryonic stem cell-like state, leading to the possibility of generating patient specific pluripotent stem cell lines with a reduced risk of immune rejection post transplantation. Recent work suggests that these hiPSC lines show a decreased risk of tumor formation compared to traditional embryonic stem cells, further enhancing their clinical relevance. To generate neural tissue, we seed these cells into different types of drug releasing scaffolds. These novel biomaterial scaffolds direct the stem cells to form functional neural tissue by delivering appropriate chemical and physical signals. Once we fully understand how to engineer neural tissue from stem cells, we can then apply these principles to produce other tissues found in the body.


    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    JUN 26, 2018 06:00 AM PDT
    C.E. CREDITS
    JUN 26, 2018 06:00 AM PDT
    Date: June 26, 2018Time: 6:00 a.m. PDT, 9:00 a.m. EDT, 1500 CEST Today’s hematology analyzers employ various methods for enumerating platelets. These methods include: e...
    Loading Comments...