MAY 10, 2017 7:30 AM PDT

Enrichment of cffDNA and ctDNA via size selection for reduced diagnostic assay costs

C.E. Credits: CEU
Speaker
  • President, Coastal Genomics
    Biography
      Mr. Nesbitt completed his Masters degree in Molecular Biology at Simon Fraser University where his work focused on the discovery of new genes in the C. elegans model organism. This experience impressed upon him both the value of next generation sequencing and its vulnerabilities to the extensively manual sample preparation steps. Mr. Nesbitt started his professional career in liquid handling automation as a product manager responsible for the development of NGS library construction solutions. He now works with Coastal Genomics to launch its automated gel size electrophoresis solution, Ranger Technology.
      <br />

    Abstract

    Cell free DNA (cfDNA) analysis for the purpose of diagnostics is currently practiced for non-invasive prenatal screening of cell free fetal DNA (cffDNA), and is anticipated to be leveraged for early stage cancer detection via circulating tumour DNA (ctDNA) detection. The process can be expensive as cfDNA fragments originating from a source of interest (i.e. cffDNA, ctDNA) are greatly outnumbered by those from normal tissues. While different methodologies for enrichment are being devised to deal with this issue, recent evidence suggests that cffDNA and ctDNA may be largely degraded to a final size of a specific length range. Such a reality opens the door to enrichment via tight size selection. Coastal Genomics is working to validate its Ranger® Technology platform for automation of high resolution gel-based size selection. In this talk, we discuss progress on this front, and consider realistic implementation of size selection in the context of the tradeoff between assay specificity and sensitivity.


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    Loading Comments...
    Show Resources
    Attendees
    • See more