FEB 24, 2016 01:00 PM PST

From genomics to precision medicine: Uncovering and manipulating the genetic circuits underlying common disease

C.E. CREDITS: P.A.C.E. CE
Speakers
  • Professor, Computer Science and AI Lab, Director, MIT Computational Biology Group, Broad Institute of MIT and Harvard
    Biography
      Manolis Kellis is a Professor of Computer Science at MIT, where he directs the MIT Computational Biology Group (compbio.mit.edu). He has helped direct several large-scale genomics projects, including the NIH Roadmap Epigenomics project, the comparative analysis of 29 mammals, the Encyclopedia of DNA Elements (ENCODE) project, and the Genotype Tissue-Expression (GTEx) project. He received the US Presidential Early Career Award in Science and Engineering (PECASE), the NSF CAREER award, the Alfred P. Sloan Fellowship. He obtained his Ph.D. from MIT, where he received the Sprowls award for the best doctorate thesis in computer science. He lived in Greece and France before moving to the US.

    Abstract:

    Precision medicine requires understanding the mechanistic basis of complex disorders, and to precisely manipulate these mechanisms to better human health. This is partly enabled by the recent revolution in human genetic studies, which resulted in thousands of disease-associated regions. However, translating genetic results into mechanistic insights remains an unsolved challenge, partly because in 90% of cases, disease-associated common variants do not affect protein function directly, but instead alter genomic control elements that govern gene expression patterns. To systematically characterize these control elements and their circuitry, we generated epigenomic maps of 127 primary human tissues and cell types, and networks linking them to their target genes and their upstream regulators. We have used these maps and circuits to understand how human genetic variation contributes to disease and cancer, providing an unbiased view of disease genetics and sometimes re-shaping our understanding of common disorders. For example, we find evidence that genetic variants contributing to Alzheimer’s disease act primarily through immune processes, rather than neuronal processes. We also find that the strongest genetic association with obesity acts via a master switch controlling energy storage vs. energy dissipation in our adipocytes, rather than through the control of appetite in the brain. We have shown that we can manipulate these circuits by genome editing or gene targeting, opening up tissue-autonomous therapeutic avenues against the obesity epidemic. In addition to dissecting known disease-associated regions, we have combined genetic information with regulatory annotations and with epigenetic variation to discover new disease regions in cardiovascular disease, Alzheimer’s disease, and prostate cancer. These results span the spectrum of common, rare, and somatic variants, and illustrate the power and broad applicability of regulatory annotations and circuits for understanding human disease and cancer. 


    Show Resources
    You May Also Like
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    MAY 02, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 02, 2018 08:00 AM PDT
    Immunohistochemistry protocols, which utilize antibodies to visualize proteins in tissue sections, have many steps that need optimized to prevent non-specific background effects, artifacts, o...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    Loading Comments...
    Show Resources