NOV 15, 2018 10:00 AM PST

Applications of Brain-Model Technology

Speakers
  • Professor, Department of Pediatrics/Cellular & Molecular Medicine, University of California, San Diego
    Biography
      Dr. Muotri earned a BSc in Biological Sciences from the State University of Campinas in 1995 and a Ph.D. in Genetics in 2001 from University of Sao Paulo, in Brazil. He moved to the Salk Institute as Pew Latin America Fellow in 2002 for a postdoctoral training in the fields of neuroscience and stem cell biology. He has been a Professor at the School of Medicine, University of California in San Diego since late 2008. His research focuses on modeling neurological diseases, such as Autism Spectrum Disorders, using human induced pluripotent stem cells. His lab has developed several techniques to culture human neurons and glia for basic research and drug-screening platforms. He has received several awards, including the prestigious NIH Director's New Innovator Award, NARSAD, Emerald Foundation Young Investigator Award, Surugadai Award from Tokyo University, Rock Star of Innovation from CONNECT, NIH EUREKA Award among others.

    Abstract:

    The complexity of the human brain, with thousands of neuronal types, permits the development of sophisticated behavioral repertoires, such as language, tool use, self-awareness, symbolic thought, cultural learning and consciousness. Understanding what produces neuronal diversification during brain development has been a longstanding challenge for neuroscientists and may bring insights into the evolution of human cognition. Human pluripotent stem cells have the ability to differentiate in specialized cell types, such as neurons and glia. Moreover, induced pluripotent stem cells can be achieved from living individuals by reprogramming somatic cells that would capture their entire genome in a pluripotent state. From these pluripotent state, it is possible to generate models of the human brain, such as brain organoids. We have been using brain-model technology (BMT) to gain insights on several biological processes, such as human neurodevelopment and evolution. We also applied BMT to measure the impact of genetic variants in autism spectrum disorders and for evolutionary studies. The reconstruction of human synchronized network activity in a dish can help to understand how neural network oscillations might contribute to the social brain. Our findings suggest a potential bridge to the gap between the microscale in vitro neural networks electrophysiology and non-invasive electroencephalogram.


    Show Resources
    You May Also Like
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    MAR 20, 2019 09:00 AM PDT
    C.E. CREDITS
    MAR 20, 2019 09:00 AM PDT
    DATE:  March 20, 2019TIME:  9:00am PDT...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    Loading Comments...
    Show Resources