JUN 26, 2020 8:00 AM PDT

Next-Generation Cytogenetics: international, multi-center study of chromosomal aberrations in constitutional diseases and leukemia with Bionano genome imaging

Sponsored by: Bionano Genomics
C.E. Credits: Florida CE P.A.C.E. CE
Speakers

Abstract
Join us June 26th at 8am PT, 11am ET as Dr. Laila El Khattabi and Dr. Alexander Hoischen discuss Next-Generation Cytogenetics: international, multi-center study of chromosomal aberrations in constitutional diseases and leukemia with Bionano genome imaging
 
Dr. El Khattabi:  Genome-mapping using Bionano allows for comprehensive detection of chromosomal aberrations in constitutional diseases and leukemia.
 
Dr. Hoischen:  Next generation cytogenetics: Optical mapping identifies hidden germline structural variant in rare disease cases and allows comprehensive somatic SV detection in leukemia. 
 
Structural variants (SVs) are an important source of genetic variation in the human genome and they are involved in a multitude of human diseases as well as cancer. SVs are enriched in repeat-rich regions of the human genome, and several remain undetected by conventional short-read sequencing technologies.  Here we applied Bionano Genomics’ high-resolution optical mapping to comprehensively identify SVs, leveraging the most recent improvements: a) deep-genome coverage (400x) to enable somatic mutation detection in leukemia samples; b) highest resolution (≥500bp) and no sequencing bias allows detection of SVs refractory to sequencing in rare disease cases.  Deep-genome coverage was used to comprehensively detect somatic SVs on 52 leukemia samples, and allowed the 100% concordance for all aberrations with >10% variant allele fraction that previously required a combination of karyotyping, FISH and/or CNV-microarray. In addition, optical mapping allowed the identification of SVs that remained refractory to detection by classical methods including MLPA, Sanger sequencing, exome and/or genome sequencing. This allowed the identification of likely disease causing SVs in 5/20 research cases. Including a) a partial deletion of the NSF gene located in the distal segmental-duplication in 17q21.31, which likely disrupts NSF in a patients with intellectual disability; this event remained undetected even by long-read SMRT sequencing; b) a retrotransposon insertion in patient with a tumor-predisposition syndrome
 
In summary, the full concordance with diagnostic standard assays in leukemia demonstrates the potential to replace classical cytogenetic tests. We furthermore show how the complementary use of mapping rather than sequencing approaches can unmask hidden SVs.
 
Learning objectives:
  • Develop awareness of new long read technologies for whole genome study
  • Review findings in complex Cancer/constitutional cases in a clinical or research setting
 
 
Webinars will be available for unlimited on-demand viewing after live event.
 
LabRoots is approved as a provider of continuing education programs in the clinical laboratory sciences by the ASCLS P.A.C.E. ® Program. By attending this webinar, you can earn 1 Continuing Education credit once you have viewed the webinar in its entirety.

Show Resources
You May Also Like
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
SEP 16, 2021 8:00 AM PDT
C.E. CREDITS
SEP 16, 2021 8:00 AM PDT
Date: September 16, 2021 Time: 8:00am (PDT), 11:00am (EDT) Rapid screening and speed of scale-up in protein therapeutics are critical factors in today’s biotech and pharma workflows. T...
JUN 24, 2021 8:00 AM PDT
C.E. CREDITS
JUN 24, 2021 8:00 AM PDT
Date: June 24, 2021 Time: 8:00am (PDT), 11:00am (EDT) Cardiovascular disease is a leading health problem, affecting almost 30% of individuals in the developed world, and comprises a wide ran...
MAY 18, 2021 8:00 AM PDT
C.E. CREDITS
MAY 18, 2021 8:00 AM PDT
Date: May 18, 2021 Time: 8:00am (PST) The global pandemic has caused an increased focus and scrutiny on molecular diagnostic assay development, resulting in a need for assays that provide qu...
C.E. CREDITS
The Human Microbiome Project was conceived almost 15 years ago, as an extension of the Human Genome Project, to explore the diversity of human-associated microorganisms at multiple body site...
Loading Comments...
Show Resources