AUG 21, 2013 10:00 AM PDT

Genomic Approaches to Discover Biomarkers of Drug Response in Cancer

C.E. Credits: CE
Speaker
  • Assistant Professor in the Department of Pathology, Research Scientist, Memorial Sloan-Kettering Cancer Center
    Biography
      Michael Berger, PhD is an Assistant Attending in the Department of Pathology and an Affiliate Member of the Human Oncology and Pathogenesis Program, with expertise in cancer genomics and computational biology. His research focuses on the enumeration of the spectrum of genetic mutations in human tumors in order to identify biomarkers of cancer progression and drug response. Dr. Berger joined the MSKCC faculty in October 2010 after working as a research scientist and computational biologist in the Cancer Program at the Broad Institute of Harvard and MIT. At the Broad, he served as the project leader and primary data analyst for numerous efforts employing massively parallel "next generation" sequencing to characterize genetic mutations in a range of cancers. He now runs an independent research laboratory at MSKCC that is developing methods to reliably and accurately profile clinical specimens for cancer-related DNA mutations and copy number alterations. His laboratory is engaged in many collaborations with clinical and translational investigators to discover significant oncogenic mutations in rare or understudied tumor types and identify genomic biomarkers exhibiting correlations with clinical outcomes and therapeutic response. He is also working closely with the CLIA compliant Diagnostic Molecular Pathology Laboratory to build a robust profiling pipeline and analytical framework for use in real-time patient management. Dr. Berger received his Bachelor's Degree in Physics at Princeton University and his Ph.D. in Biophysics at Harvard University.

    Abstract

    Massively parallel sequencing technology has proven to enable the identification of driver genetic alterations in patients' tumors that may be suppressed by targeted therapies. Through retrospective analysis of clinical specimens, one can discover genomic biomarkers that predict outcomes and therapeutic response. Longitudinal profiling of multiple tumors in a single patient can reveal factors that influence tumor progression and drug resistance. Finally, prospective sequencing of patient specimens, when coupled with complementary radiology and histology based imaging, can enhance the clinical diagnosis and treatment of cancer patients. For increasingly lower costs, one can profile clinically relevant genes for mutations, copy number alterations, and structural rearrangements, with high detection sensitivity in low purity or multi-clonal tumor tissue. Advances in target capture, sample multiplexing, and profiling of formalin-fixed paraffin embedded (FFPE) specimens have further established the clinical utility of next generation sequencing. However, challenges remain in the application of these techniques to the analysis of clinical samples. In addition to the technical challenge of analyzing scant amounts of FFPE tissue, one must overcome the biological challenges of aneuploidy and heterogeneity inherent to the genetics of cancer. I will discuss different strategies for sequencing clinical samples, including different sequencing platforms, capture methods, and breadth of testing (i.e. targeted versus comprehensive approaches). I will describe examples in which our group has performed massively parallel sequencing on clinically annotated tumor specimens to identify genomic biomarkers of drug response and resistance. Finally, I will describe additional challenges in prospectively applying these techniques for clinical diagnosis involving bioinformatics, clinical interpretation, regulatory compliance, and ethics.


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    NOV 10, 2020 7:00 AM PST
    C.E. CREDITS
    NOV 10, 2020 7:00 AM PST
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    C.E. CREDITS
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    Loading Comments...
    Show Resources
    Attendees
    • See more