OCT 10, 2019 6:00 AM PDT

Highly-efficient and -specific genome editing with Cas9 nickase ribonucleoproteins in Primary T-cells

Sponsored by: MilliporeSigma
Speaker

Abstract

In this webinar, we will be discussing some of our most recent testing using our Cas9 proteins, Cas9 RNP nickases in a variety of human cell types, including primary T-cells. Cas nucleases when delivered in protein format, pre-complexed with a single, modified guide RNA (gRNA), rather than encoded on a plasmid, allow researchers to bypass the historically limiting factors of using CRISPR in the therapeutic realm of off-targeting effects, low efficiency, and undesired cellular responses to foreign DNA. Modifying that Cas9 nuclease into a nickase with only a single active cutting domain, and then delivering two with proximal guide RNAs in a pair allows precise double stranded breaks, and provides hyper-specific and efficient genome editing in cell types that are more difficult to edit in.

CRISPR/Cas technologies have unlocked vast genome editing possibilities in human cell lines but have been historically limited in the therapeutic realm by off-targeting effects, low efficiency, and undesired cellular responses to foreign DNA plasmids. Recent advancements to combat these limitations include the direct delivery of ribonucleoproteins (RNPs) to cells. In this method, Cas nucleases are delivered in protein format, pre-complexed with a single, modified guide RNA (gRNA), rather than encoded on a plasmid. Another recent advancement is the use of paired Cas9 nickase systems. A nickase is a modified Cas9 nuclease with only one active cutting domain, allowing it to create single-stranded nicks in its target DNA. To achieve a double-stranded break (DSB), nickases must utilize two individual gRNAs targeting proximal DNA sequences, making an off-target DSB nearly impossible. Here, we combine these two innovations, enabling highly-efficient editing in human cells, without observable off-target effects, via the use of paired-nickase Cas9 RNPs. The improvements this system makes on previous methods lends to greater exploration of CRISPR technologies in the therapeutic domain

Learning Objectives:

1. Advantages of RNPs in Primary Cells

2. Nickase Design

3. Therapeutic Implications of this design


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
APR 21, 2021 5:00 PM CEST
APR 21, 2021 5:00 PM CEST
Date: April 21, 2021 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Spatial Answers Trilogy - Spatial Answers in Immunology Immunology Researchers share their Spatial Discoveries in SARS-C...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
JUL 15, 2021 8:00 AM PDT
C.E. CREDITS
JUL 15, 2021 8:00 AM PDT
Date: July 15, 2021 Time: 8:00am (PDT), 11:00am (EDT) High dimensional full spectrum flow cytometry grants unprecedented access to previously unattainable parameters in cellular biology. Flu...
OCT 10, 2019 6:00 AM PDT

Highly-efficient and -specific genome editing with Cas9 nickase ribonucleoproteins in Primary T-cells

Sponsored by: MilliporeSigma

Specialty

Molecular Biology

Cell Biology

Immunology

Gene Expression

Genomics

Cell Culture

Cancer Research

Dna

Genetics

Biotechnology

Animal Research

Cancer Diagnostics

Clinical Diagnostics

T-Cells

Biomarkers

Geography

North America53%

Asia33%

Europe13%

Registration Source

Website Visitors100%

Job Title

Student17%

Educator/Faculty17%

Facility/Department Manager17%

Biologist8%

Medical Laboratory Technician8%

QC/QA8%

Research Scientist8%

Engineer8%

Lab Management8%

Organization

Academic Institution53%

Life Science Company7%

Medical Center7%

Clinical Laboratory7%

General Laboratory7%

Manufacturer - Other7%

Biotech Company7%

Other7%


Show Resources
Loading Comments...
Show Resources