JAN 27, 2017 4:00 AM PST

WEBINAR: Highly Multiplexed Single Cell Analysis Of Tumor Heterogeneity Through Time and Space by Mass Cytometry

Speakers

Abstract

DATE: January 27, 2017
TIME: 4:00am PT, 7:00am ET, 1:00pm CET

The study of the tumor ecosystem and its cell-to-cell communications is essential to enable an understanding of tumor biology, to define new biomarkers to improve patient care, and ultimately to identify new therapeutic routes and targets.

To study and understand the workings of the tumor ecosystem (TME), highly multiplexed image information of tumor tissues is essential. Such multiplexed images will reveal which cell types are present in a tumor, their functional state, and which cell-cell interactions are present. To enable multiplexed tissue imaging, we developed imaging mass cytometry (IMC). IMC is a novel imaging modality that uses metal isotopes of defined mass as reporters on antibodies and currently allows the visualization of over 50 proteins simultaneously on tissues with subcellular resolution. In the near future, we expect to be able to visualize over 100 proteins. Thus highly specific, reproducible and deeply validated antibodies are essential for IMC and any multiplexed antibody based method.
 
We applied IMC for the analysis of hundreds of breast cancer samples in a quantitative manner. Our analysis with a novel computational pipeline reveals a surprising level of inter and intra-tumor heterogeneity and identified new diversity within known human breast cancer subtypes, as well as a variety of stromal cell types that interact with them. Furthermore, we identified cell-cell interaction motifs in the tumor microenvironment correlating with clinical outcomes of the analyzed patients.
 
In summary, our results show that IMC provides targeted, high-dimensional analysis of cell type, cell state and cell-to-cell interactions within the TME at subcellular resolution. Spatial relationships of complex cell states of cellular assemblies can be used as biomarkers. We envision that IMC will enable a systems biology approach to understand and diagnose disease and to guide treatment.

Learning Objectives:

  • Learn about the novel imaging technique imaging mass cytometry (IMC)
  • Understand how antibody quality impacts highly multiplexed techniques

Show Resources
You May Also Like
FEB 15, 2023 7:00 AM PST
FEB 15, 2023 7:00 AM PST
Date: February 15, 2023 Time: 7:00am (PST), 10:00pm (EST), 4:00pm (CET) While not all microscopy samples can fluoresce, all can scatter light, and this scattered light can be imaged. This ha...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
NOV 16, 2022 7:00 PM PST
C.E. CREDITS
NOV 16, 2022 7:00 PM PST
Date: November 16, 2022 Time: 2:00pm (AEST) Date: November 17, 2022 7:00pm (PST), 10:00pm (EST), 4:00am (CET) The growth in FDA-approved cell and gene therapy products for the treatment of d...
OCT 05, 2022 7:00 AM PDT
C.E. CREDITS
OCT 05, 2022 7:00 AM PDT
Date: October 05, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) Cancer is a complex disease at the level of both cells and tissues, and uncovering novel treatments requires understan...
Loading Comments...
Show Resources