OCT 12, 2017 10:30 AM PDT

Hypersecretion of fibroblast-derived exosomes during chemotherapy promotes pancreatic cancer chemoresistance

Speaker
  • Archibald Assistant Professor of Cancer Biology, Department of Biological Sciences, Harper Cancer Research Institute, University of Notre Dame
    BIOGRAPHY

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a five-year survival rate of only 9%. Acquired drug resistance is a major factor that limits the effectiveness of chemotherapy. Exosomes, secreted membrane vesicles that range in size from 30–100 nm in diameter, released from epithelial cancer cells can promote drug resistance. However fibroblasts, not epithelial cells, make up the majority of the tumor bulk in PDAC. Despite the long-standing recognition of the prominence of the fibroblasts in PDAC, the mechanisms through which fibroblast-derived exosomes may contribute to chemoresistance following exposure to chemotherapy have not been studied. A molecular-level understanding of possible fibroblast-driven mechanisms of chemoresistance is essential for the development of more effective treatment strategies.

Here, we show that CAFs exposed to chemotherapy play an active role in regulating the survival and proliferation of cancer cells through the hypersecretion of chemoresistance-promoting exosomes. We found that CAFs exposed to gemcitabine (GEM), the most widely used adjuvant therapy for PDAC, increase the release of exosomes. We utilized miRNA-SEQ analysis to identify miRs that were significantly increased in the exosomes of GEM-treated CAFs compared to treatment naïve CAFs and WT pancreatic fibroblasts. Five out of the top 10 hits were miRs that target PTEN. We utilized GW4869, a compound that inhibits exosome secretion, to functionally show in vitro and in vivo that blocking exosome release from GEM-treated CAFs reduces chemotherapy resistance in PDAC cells through restoration of PTEN expression. Collectively, these findings elucidate the role of CAF-derived exosomes in regulating PDAC chemoresistance and suggest that therapeutic strategies design to inhibit exosome release may lead to improved patient response.


Show Resources
You May Also Like
NOV 16, 2022 7:00 PM PST
C.E. CREDITS
NOV 16, 2022 7:00 PM PST
Date: November 16, 2022 Time: 2:00pm (AEST) Date: November 17, 2022 7:00pm (PST), 10:00pm (EST), 4:00am (CET) The growth in FDA-approved cell and gene therapy products for the treatment of d...
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
APR 26, 2022 7:00 AM PDT
C.E. CREDITS
APR 26, 2022 7:00 AM PDT
Date: April 19, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) High-content (HC) phenotypic profiling approaches are a powerful tool to study the effect of biological, genetic, and ch...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
OCT 12, 2017 10:30 AM PDT

Hypersecretion of fibroblast-derived exosomes during chemotherapy promotes pancreatic cancer chemoresistance



Show Resources
Loading Comments...
Show Resources