AUG 20, 2014 2:15 PM PDT

Identifying transcriptional regulators of human embryonic development via expression variability

Speaker
  • Assistant Professor, Department of Systems & Computational Biology, Assistant Professor, Department of Epidemiology & Population Health, Albert Einstein College of Medicine
    BIOGRAPHY

Abstract

Understanding how genes coordinate their expression across cells in a growing embryo can provide insights into the transcriptional programs that control development. Intercellular variability of gene expression reflects how consistent expression levels are between cells of the same embryo. An analysis of expression variability can therefore identify which genes are consistently or heterogeneously expressed in a population of cells, and provides a window into regulatory control. Using an analysis of previously published single-cell RNA-seq data set on embryos at collected at different developmental stages, we have identified a putative set of gene expression markers of morulae and blastocyst stages based on changes in intercellular variability. We highlight how genes with extreme levels of variability are enriched for distinct functions and pathways; lowly variable genes operate in maintenance pathways such as protein synthesis, gene expression and cell cycle while highly variable genes tend to be involved in metabolism. Our results suggest that genes with critical and survival roles for the cell are expressed stably while those related to specialized functions are have variable inter-cellular expression. We identified genes with invariant expression across the development stages; such genes fall clearly into three categories of modes corresponding to off, on and highly activated levels of expression. Genes switched on are involved in critical regulatory pathways like EIF2 signaling, protein ubiquitination and mTOR signaling. Genes that are consistently off function in the development of specialized cell types and metabolites. Overall, our analysis suggests new regulators involved in controlling the development of human embryos that would have otherwise been missed using methods that focus on average expression levels and highlight the value in studying expression variability.


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
DEC 01, 2021 7:00 AM PST
C.E. CREDITS
DEC 01, 2021 7:00 AM PST
Date: December 01, 2021 Time: 7:00am (PST), 10:00am (EST) In the era of immuno-oncology, there is a growing need for the identification of new biomarkers predictive for sensitivity to anti-P...
OCT 27, 2021 6:00 AM PDT
C.E. CREDITS
OCT 27, 2021 6:00 AM PDT
Date: October 27, 2021 Time: 6:00 AM PDT, 9:00 AM EDT Etanercept is a recombinant Fc fusion protein therapeutic that has a complex distribution of post-translation modifications (PTM), such...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
AUG 20, 2014 2:15 PM PDT

Identifying transcriptional regulators of human embryonic development via expression variability



Show Resources
Loading Comments...
Show Resources