MENU
AUG 30, 2016 8:00 AM PDT

Improved differentiation of human pluripotent stem cell-derived neurons through reduction of progenitor proliferation: impact on downstream applications

Speaker

Abstract
Neurons derived from human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are excellent resources for disease modeling and drug screening. Human PSCs derived neural stem cells (NSCs) can be expanded in culture and further differentiated into mature neurons for various applications, however, these often contain mixed population of both differentiated neurons and undifferentiated NSCs. Due to the continuing proliferation of undifferentiated NSCs, very high cell densities and cell aggregation are usually observed during the differentiation of hPSC-derived NSCs which increase over time, posing challenges for long-term maintenance and downstream analysis.  Here we demonstrate the use of a new supplement which can reduce the proliferation of undifferentiated NSCs without negatively impacting the rate or extent of differentiation for hPSC-derived NSCs.  The overall effect increases the relative population of differentiated neurons in culture.  Typically under these conditions by 2-3 weeks, differentiated neurons with extensive neurite networks are seen that are evenly distributed across the culture surface, with very little clumping or aggregation observed.  Further, this more uniform morphology and enriched neuron population greatly facilitates quantitative image analysis, as demonstrated by high content analysis using automated a CellInsight™ CX5 imaging platform which showed differentiated neurons expressing mature neuronal markers MAP2 or HuC&D without the contamination of undifferentiated Nestin positive NSCs, as seen in control samples.  Multielectrode array (MEA) analysis demonstrates that differentiated neurons fired spontaneous action potentials, indicating functional neurons. In addition, use of this new supplement enabled differentiated neurons to be maintained for longer time in culture than untreated control cells.

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
NOV 17, 2021 8:00 AM PST
C.E. CREDITS
NOV 17, 2021 8:00 AM PST
Date: November 17, 2021 Time: 8:00am (PDT), 11:00am (EDT) From waste disposal to promising biomarkers and therapeutic agents, exosomes and other extracellular vesicles are valuable in resear...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
SEP 29, 2021 11:00 AM PDT
C.E. CREDITS
SEP 29, 2021 11:00 AM PDT
Date: Septembr 29, 2021 Time: 11:00am (PDT), 2:00pm (EDT) 3D cell models are becoming increasingly popular for studying complex biological effects, tissue functionality, and diseases. While...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
Loading Comments...
Show Resources