MAY 17, 2017 10:30 AM PDT

WEBINAR: Improved differentiation of stem cell-derived neurons and downstream applications through the reduction of progenitor proliferation with CultureOne™ Supplement

Speaker
  • Director and Group Leader, Thermo Fisher Scientific
    Biography
      Dr. Kuninger leads research, development and commercialization of media systems for pluripotent stem cell culture & differentiation, neurobiology, and (non-hepatic) primary cell biology at Thermo Fisher Scientific in the Cell Biology business based in Frederick MD. His teams support numerous portfolios and have launched over 25 new products spanning stem cell culture & cryopreservation, differentiation (endo-, ecto- and meso-dermal lineages) and neurobiology over the past 3 years. David is a seasoned scientist and manager, experienced in media formulation & optimization, assay design and implementation, and troubleshooting. Expertise in GLP/GMP compliance, tech transfer and scale up, as well as verification and validation processes. Prior to starting at Thermo Fisher Scientific (legacy Invitrogen) in 2007 as Staff Scientist, he joined Oregon Health Sciences University as a Postdoctoral Fellow investigating the actions of insulin-like growth factors in the lab of Dr. Peter Rotwein, subsequently joining the faculty in the Department of Biochemistry at OHSU as a Research Instructor. He completed is PhD in Biochemistry and Genetics University of Texas Medical Branch in the laboratory of Dr. John Papaconstatinou and has a B.S. in Chemistry from the University of Oregon.

    Abstract

    DATE: May 17, 2017
    TIME: 10:30am PT, 1:30pm ET

    Neurons derived from human pluripotent stem cells (hPSCs) and primary rodent neurons both are excellent resources for disease modeling and drug screening.  Human PSCs derived neural stem cells (NSCs) can be expanded in culture and further differentiated into mature neurons for various applications, however, these often contain mixed population of both differentiated neurons and undifferentiated NSCs. Due to the continuing proliferation of undifferentiated NSCs, very high cell densities and cell aggregation are usually observed during the differentiation of hPSC-derived NSCs which increase over time, posing challenges for long-term maintenance and downstream analysis.  Primary rodent neuronal cultures, while highly physiologically relevant, are often challenged by glial cell overgrowth, which may exacerbate assay and analysis issues.  Here we demonstrate the use of CultureOne(tm) - a new supplement which can reduce the proliferation of undifferentiated NSCs without negatively impacting the rate or extent of differentiation for hPSC-derived NSCs.  Further, we will demonstrate the ability to "tune" the glial cell population in primary rodent neuronal cultures.  The overall effect in both instances increases the relevant population of neurons in culture.  Experimental data presented in this webinar will  illustrate the functionality, morphology, and maturity of these neuronal cultures.


    Show Resources
    You May Also Like
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    Loading Comments...
    Show Resources