MAR 13, 2019 1:20 PM PDT

Innovative Neurotechnologies: Merging Minds and Machines: Brain Computer Interfaces (BCIs) to Restore Movement and Communication for People with Paralysis

Presented at: Neuroscience 2019
Speaker

Abstract

Neurotechnology promises a way to repair the damaged nervous system that requires a merger of neuroscience, engineering and clinical knowledge.  Brain Computer Interfaces can now read out the intention to move through a tiny brain interface connected to a computer. Algorithms, based on our understanding of brain activity can decode patterns of neural activity into useful action commands. These commands can already  operate computers for communication, robots to act as a surrogate arm, or even reanimate a paralyzed limb, allowing people to type or reach and grasp with their own arm and hand.  Decoding is possible because of years of inquiry into the way non-human primate brains encode complex movements, and sensors can function years in the brain because of neuroengineering advances made in animal research.   Despite these advances control by people with paralysis is slow and less dexterous than in a typical person, because we lack an adequate 'theory of brain function'  and optimal electrodes for sampling neural activity.  BCIs are not yet capable of home use because we need to create novel implantable, miniaturized processors that can communicate large amounts of information at high speed from the brain to the body or machines.  But these obstacles are being overcome as well.  As these advances emerge, we are moving towards reaching a vision where a person paralyzed from stroke, spinal cord or brain injury, or neurodegenerative diseases like ALS, will be able to resume everyday, independent life.  


Show Resources
You May Also Like
APR 26, 2022 7:00 AM PDT
C.E. CREDITS
APR 26, 2022 7:00 AM PDT
Date: April 19, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) High-content (HC) phenotypic profiling approaches are a powerful tool to study the effect of biological, genetic, and ch...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
MAR 23, 2022 11:00 AM PDT
MAR 23, 2022 11:00 AM PDT
Date: March 23, 2021 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEDT) In this presentation, Dr. Middleton will review the development and deployment of large-scale saliva-based COVID-19 test...
APR 28, 2022 8:00 AM PDT
APR 28, 2022 8:00 AM PDT
Date: April 28, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Human pluripotent stem cells (PSCs) and their derivatives hold great potentials in...
MAR 02, 2022 9:00 AM PST
C.E. CREDITS
MAR 02, 2022 9:00 AM PST
Date: March 02, 2022 Time: 9:00am (PST), 12:00pm (EST) Single cell RNA-seq is known to only capture a small fraction of the transcriptome of each cell. Often, this is due to inherent limitat...
MAR 16, 2022 8:00 AM PDT
C.E. CREDITS
MAR 16, 2022 8:00 AM PDT
Date: March 16, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CET) Handling of potent and/or hazardous substances is commonplace in sev.....
MAR 13, 2019 1:20 PM PDT

Innovative Neurotechnologies: Merging Minds and Machines: Brain Computer Interfaces (BCIs) to Restore Movement and Communication for People with Paralysis

Presented at: Neuroscience 2019


Show Resources
Loading Comments...
Show Resources