OCT 03, 2018 10:30 AM PDT

Integrating Novel Advances in Gene Delivery and Genome Engineering for Therapeutic Application

Presented at: CRISPR 2018
Speaker
  • Professor of Chemical and Biomolecular Engineering, Department of Bioengineering, Director of the Berkeley Stem Cell Center, University of California at Berkeley
    BIOGRAPHY

Abstract

There have been an increasing number of successful human gene therapy clinical trials, and in particular gene delivery vehicles or vectors based on the adeno-associated virus (AAV) have enabled success in trials for hemophilia B, spinal muscular atrophy, X-linked myotubular myopathy, and Leber’s congenital amaurosis type 2 (LCA2). The LCA2 trials led to the first FDA approval of a gene therapy for rare disease in the US in December, 2017.  That said, vectors based on natural versions of AAV face a number of delivery challenges that limit their efficacy and will thus preclude the extension of these successes to the majority of human diseases.  These delivery limitations arise since the parent viruses upon which these vectors are based were not evolved by nature for our convenience to use as human therapeutics.  We have been developing and implementing a high throughput approach termed directed evolution – involving the iterative genetic diversification of a viral genome and functional selection for desired properties – to engineer highly optimized variants of AAV for a broad range of cell and tissue targets.

In parallel, the advent of genome editing technologies such as the CRISPR/Cas9 system raise the possibility of using gene delivery not only for gene replacement but for repair or knockout of endogenous genes.  We have thus been combining engineered AAVs with CRISPR/Cas9 for a range of applications.  For example, delivery of a Cas9 targeting mutant superoxide dismutase (SOD1) in a murine model of amyotrophic lateral sclerosis delayed the onset of disease symptoms and significantly extended animal lifespan.  In addition, we engineered an AAV for enhanced transport along neuronal axons, and delivery of Cas9 enabled the knockout of specific genes in vivo within projection neurons from a distance, work with both basic and translational applications.  Finally, we have combined AAV delivery of donor constructs with Cas9 ribonucleoproteins to effect efficient homologous recombination within in genomic target loci.  The integration of these new technologies – Cas9 cargo with AAV delivery – can thus enable a broad range of basic and therapeutic applications.

Learning Objectives: 

1. Adeno-associated viral vectors have the capacity to mediate efficient delivery of CRISPR/Cas9, leading to effective genome editing in vivo.
2. As a result, CRISPR/Cas9 is an effective tool to knock out autosomal dominant alleles that underlie human disease.


Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
SEP 22, 2022 9:00 AM PDT
SEP 22, 2022 9:00 AM PDT
Date: September 22, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 6:00pm (CEST) Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarke...
NOV 16, 2022 7:00 PM PST
C.E. CREDITS
NOV 16, 2022 7:00 PM PST
Date: November 16, 2022 Time: 2:00pm (AEST) Date: November 17, 2022 7:00pm (PST), 10:00pm (EST), 4:00am (CET) The growth in FDA-approved cell and gene therapy products for the treatment of d...
AUG 24, 2022 7:00 AM PDT
AUG 24, 2022 7:00 AM PDT
Date: August 24, 2022 Time: 7:00am (PDT), 10:00pm (EDT), 4:00pm (CEST) Light field microscopy was first introduced in 2006, and allows users to capture the 4D light field within the microsco...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
SEP 28, 2022 7:00 AM PDT
SEP 28, 2022 7:00 AM PDT
Date: September 28, 2022 Time: 7:00am (PDT), 10:00am (EDT), 4:00pm (CEST) CRISPR/Cas gene editing technology has rapidly evolved over the last decade. Its versatility extends from creating t...
OCT 03, 2018 10:30 AM PDT

Integrating Novel Advances in Gene Delivery and Genome Engineering for Therapeutic Application

Presented at: CRISPR 2018


Show Resources
Loading Comments...
Show Resources