OCT 03, 2018 10:30 AM PDT

Integrating Novel Advances in Gene Delivery and Genome Engineering for Therapeutic Application

Presented At CRISPR 2018
C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Professor of Chemical and Biomolecular Engineering, Department of Bioengineering, Director of the Berkeley Stem Cell Center, University of California at Berkeley
    Biography
      David Schaffer is a Professor of Chemical and Biomolecular Engineering, Bioengineering, and Neuroscience at the University of California, Berkeley, where he also serves as the Director of the Berkeley Stem Cell Center. He received a B.S. in Chemical Engineering from Stanford University in 1993 and a Ph.D. in Chemical Engineering from the Massachusetts Institute of Technology in 1998. He then conducted a postdoctoral fellowship at the Salk Institute for Biological Studies before becoming a faculty member at the University of California, Berkeley in 1999. At Berkeley, Dr. Schaffer applies engineering principles to enhance stem cell and gene therapy approaches for neuroregeneration, work that includes novel approaches for molecular engineering and evolution of new viral vectors as well as new technologies to investigate and control stem cell fate decisions. Dr. Schaffer has received an NSF CAREER Award, Office of Naval Research Young Investigator Award, Whitaker Foundation Young Investigator Award, and was named a Technology Review Top 100 Innovator. He was also awarded the American Chemical Society Marvin Johnson Award in 2016, the American Chemical Society BIOT Division Young Investigator Award in 2006, the Biomedical Engineering Society Rita Shaffer Young Investigator Award in 2000, and was inducted into the College of Fellows of the American Institute of Medical and Biological Engineering in 2010.

    Abstract:

    There have been an increasing number of successful human gene therapy clinical trials, and in particular gene delivery vehicles or vectors based on the adeno-associated virus (AAV) have enabled success in trials for hemophilia B, spinal muscular atrophy, X-linked myotubular myopathy, and Leber’s congenital amaurosis type 2 (LCA2). The LCA2 trials led to the first FDA approval of a gene therapy for rare disease in the US in December, 2017.  That said, vectors based on natural versions of AAV face a number of delivery challenges that limit their efficacy and will thus preclude the extension of these successes to the majority of human diseases.  These delivery limitations arise since the parent viruses upon which these vectors are based were not evolved by nature for our convenience to use as human therapeutics.  We have been developing and implementing a high throughput approach termed directed evolution – involving the iterative genetic diversification of a viral genome and functional selection for desired properties – to engineer highly optimized variants of AAV for a broad range of cell and tissue targets.

    In parallel, the advent of genome editing technologies such as the CRISPR/Cas9 system raise the possibility of using gene delivery not only for gene replacement but for repair or knockout of endogenous genes.  We have thus been combining engineered AAVs with CRISPR/Cas9 for a range of applications.  For example, delivery of a Cas9 targeting mutant superoxide dismutase (SOD1) in a murine model of amyotrophic lateral sclerosis delayed the onset of disease symptoms and significantly extended animal lifespan.  In addition, we engineered an AAV for enhanced transport along neuronal axons, and delivery of Cas9 enabled the knockout of specific genes in vivo within projection neurons from a distance, work with both basic and translational applications.  Finally, we have combined AAV delivery of donor constructs with Cas9 ribonucleoproteins to effect efficient homologous recombination within in genomic target loci.  The integration of these new technologies – Cas9 cargo with AAV delivery – can thus enable a broad range of basic and therapeutic applications.

    Learning Objectives: 

    1. Adeno-associated viral vectors have the capacity to mediate efficient delivery of CRISPR/Cas9, leading to effective genome editing in vivo.
    2. As a result, CRISPR/Cas9 is an effective tool to knock out autosomal dominant alleles that underlie human disease.


    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    JUN 29, 2018 09:00 AM PDT
    C.E. CREDITS
    JUN 29, 2018 09:00 AM PDT
    DATE: June 29, 2018TIME: 09:00AM PDT, 12:00PM EDT There is significant epidemiological evidence to suggest that the consumption of a high-broccoli diet is associated with a r...
    Loading Comments...