OCT 31, 2019 9:00 AM PDT

Investigation of Endothelial Cell Viability and Growth on 3D printed GelMa Vascular Networks

  • Postgraduate Student, University of Manchester
      I originally studied Biomedical science with a year spent at an NHS hospital. My placement was at The Christie cancer NHS hospital and I specialised in Haematology and stem cell transplantation. My undergraduate project was focused on the reliability of the ADVIA machine and whether it provided consistent full blood count results. Once I completed my four year undergraduate course I then went and enrolled onto my masters course and I specialised in skeletal muscle cell differentiation and nanotechnology. My project focused on the skeletal muscle differentiation and the effect of silica loaded nanoparticles on those cells. Whilst completing my masters by research I was working as a project manager for the environment team.
      After the completion of my masters I transferred to the University of Manchester where I started on my MPhil. My project predominantly covered the change in mechanical properties of the hydrogel Gelatine Methacrylate by incorporating silica nanoparticles and it also looked at the cell viability of 3T3 mouse fibroblast cells on the gel. Once I transferred onto my PhD I used the same hydrogel but I wanted to look closely at the differentiation of human adipose derived stem cells within it whilst also encouraging artificial vascularisation.

    DATE:  October 31, 2019
    TIME:   9:00am PDT, 12:00pm EDT
    A major limitation for the development of 3D engineered tissues is the absence of viable and perfusable vasculature [1-3]. As a precursor to vascularized adipose tissue, cylindrical channels were formed in a cast gelatin methacrylate (GelMA) construct by printings sacrificial networks of Pluronic F127. Human umbilical vein endothelial cells (HUVECs) were seeded and cultured within the 3D printed channels, while Adipose derived stem cells (ADSCs) were cultured in the GelMa prior to casting the 3D printed channels.
    The hydrogel was characterized by NMR, surface tension, contact angle and DMA. Pluronic filaments were printed onto glass slides using a robotic printer . HUVECs  were cultured on GelMa substrate, whilst ADSCs were embedded within the GelMa. Live/Dead and Alamar Blue assays were used to assess the cells’ viability and proliferation respectively. Phalloidin staining was used to assess actin cytoskeleton organization.
    Once methacrylation has occurred NMR peaks are seen at 6ppm and 2ppm corresponding to lysine and methacrylated grafts of hydroxyl groups. Viability assays confirmed that HUVECs and ADSCs were viable after 48 hours. Alamar Blue data indicated an increase in cell metabolism over a 7-day period. Phalloidin staining demonstrated good organization of the actin cytoskeleton of HUVECs on GelMa. Data on HUVECs injected within the printed 2D networks and 3D culture of ADSCs within the GelMa matrix will also be presented.
    Collectively, our data illustrate that HUVECs could potentially grow and fully line the printed networks.
    Learning Objectives:
    • Explain what vascularisation is
    • Review what hydrogels and scaffolds are and how they are used
    • Describe the use of 3D printing and how it can help with tissue regeneration
    Webinars will be available for unlimited on-demand viewing after live event.
    LabRoots is approved as a provider of continuing education programs in the clinical laboratory sciences by the ASCLS P.A.C.E. ® Program. By attending this webinar, you can earn 1 Continuing Education credit once you have viewed the webinar in its entirety.

    Show Resources
    You May Also Like
    DEC 02, 2020 8:00 AM PST
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 08, 2020 7:00 AM PDT
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    SEP 10, 2020 9:00 AM PDT
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    NOV 16, 2020 8:00 AM PST
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    OCT 29, 2020 6:00 AM PDT
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 18, 2020 8:00 AM PST
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    OCT 31, 2019 9:00 AM PDT

    Investigation of Endothelial Cell Viability and Growth on 3D printed GelMa Vascular Networks


    Cell Biology

    Molecular Biology

    Cancer Research

    Cell Culture




    Cancer Therapeutics

    Clinical Research

    Molecular Diagnostics



    Cancer Diagnostics

    Gene Expression



    North America56%



    South America5%



    Registration Source

    Email Promotions44%

    Website Visitors41%

    WAVE Newsletter Promotion5%

    Trending Newsletter Promotion4%


    Job Title

    Research Scientist15%




    Medical Laboratory Technician10%


    Medical Doctor/Specialist6%

    Clinical Laboratory Scientist5%

    Post Doc5%

    Facility/Department Manager4%

    Lab Management4%




    Academic Institution37%

    Research Institute9%


    Clinical Laboratory7%

    Biotech Company7%


    Pharmaceutical Company4%

    Medical School2%

    Medical Center2%


    Non-Profit Organization1%


    Diagnostic Company1%

    Life Science Company1%


    Show Resources
    Loading Comments...
    Show Resources
    • See more