MAR 15, 2018 7:30 AM PDT

Keynote Presentation: The Dynamics of the Unconscious Brain Under General Anesthesia

Presented at: Neuroscience 2018
Speaker
  • Warren M. Zapol Prof. of Anaesthesia Harvard Medical School, Prof. of Computational Neuroscience MIT, Director, Neuroscience Statistics Research Laboratory, Anesthetist, Massachusetts General
    Biography
      Emery N. Brown, M.D., Ph.D. is the Warren M. Zapol Professor of Anaesthesia at Harvard Medical School, a Professor of Computational Neuroscience at the Massachusetts Institute of Technology and a Professor of Health Sciences and Technology at the Harvard-MIT Division of Health Sciences and Technology. Brown is the Director of the Neuroscience Statistics Research Laboratory at the Massachusetts Institute of Technology, the co-director of the Harvard-MIT Division of Health Sciences and Technology and an associate director of M.I.T.'s Institute for Medical Engineering & Science.[1] Brown also works as a doctor in the department of anesthesiology, critical care and pain medicine at Massachusetts General Hospital.[2] In 2007, Brown was one of the recipients of the National Institutes of Health Director's Pioneer Award.[3] Brown is a fellow of the American Academy of Arts and Sciences, the Institute of Electrical and Electronics Engineers and the American Association for the Advancement of Science.

    Abstract

    General anesthesia is a drug-induced, reversible condition comprised of five behavioral states: unconsciousness, amnesia (loss of memory), analgesia (loss of pain sensation), akinesia (immobility), and hemodynamic stability with control of the stress response. Our work shows that a primary mechanism through which anesthetics create these altered states of arousal is by initiating and maintaining highly structured oscillations. These oscillations impair communication among brain regions. We illustrate these impressive dynamics by presenting findings from our human studies of general anesthesia using high-density EEG recordings and intracranial recordings. These studies have allowed us to give a detailed characterization of the neurophysiology of loss and recovery of consciousness due to propofol. We show how the oscillatory dynamics change systematically with different anesthetic classes and with age. The age-related changes reflect brain development in children and brain aging in adults. Finally, we demonstrate that the state of general anesthesia can be rapidly reversed by activating specific brain circuits. The success of our research has depended critically on tight coupling of experiments, signal processing research and mathematical modeling. These new insights into the mechanisms of anesthetic action suggest new strategies for using the EEG to monitor the brain states of patients receiving general anesthesia, more principled strategies to dose anesthetics and new approaches to using studies of general anesthesia to gain new, fundamental insights into how the brain works. 


    Show Resources
    You May Also Like
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    JUN 23, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 23, 2020 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: June 23, 2020 TIME: 10:00am PT Human mesenchymal stromal or stem cells (MSCs)-based immunomodulation treatment has been proposed as a suitable therapeutic approach for many diseases, s...
    JUN 09, 2020 3:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2020 3:00 PM CEST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: June 9, 2020 TIME: 6am PT, 9am ET, 3pm CEST The importance of disposable plastic consumables and their overall impact on the experimental workflow of qPCR has been taken into considera...
    MAR 24, 2020 10:00 AM PDT
    C.E. CREDITS
    MAR 24, 2020 10:00 AM PDT
    DATE: March 24, 2020 TIME: 10:00 am PDT, 1:00pm EDT The Clampfit software module is a useful tool to manipulate and analyze electrophysiological data acquired by pCLAMP™ software. Rece...
    DEC 04, 2019 7:00 AM PST
    C.E. CREDITS
    DEC 04, 2019 7:00 AM PST
    DATE: December 4, 2019TIME: 7:00am PST, 10:00am EST, 4:00pm CET Do you know how it feels when you just quickly want to redo an experiment that your colleague did, or an experim...
    Loading Comments...
    Show Resources
    Attendees
    • See more