OCT 05, 2016 7:30 AM PDT

Keynote Speaker: How to meet the challenge of counting and analyzing tumor cells circulating in the peripheral blood

Speaker
  • Donner Professor of Science and Professor of Chemistry, Emeritus
    Biography
      Giacinto Scoles (b. 1935, married to Lim Giok Lan since 1964) is Donner professor of Science, Emeritus at Princeton University, distinguished adjoint professor in the Departments of Physics and Biology at Temple University, and distinguished scientist at Synchrotron Elettra in Trieste. He is presently senior grantee of the ERC in the faculty of Medicine at the University of Udine (Italy). His career has spanned an unusually long length of time and an equally unusually broad range of subjects. He has developed instrumentation in mass spectroscopy, gas viscosimetry, crossed molecular beam scattering, clusters formation and spectroscopy, surface monolayer, grazing incidence X-ray scattering, super-fluid helium droplets; manipulation of bio-molecules, bio-molecular interaction at the nano scale and medical nano diagnostics. He and a group of collaborators have recently patented a method to count circulating tumor cells based on the measurement of the metabolism of every cell isolated into a droplet of blood of several picoliters. When the droplet results to become acid, that indicates the presence of the cancer cells. He has received several recognitions: the Herschbach prize (2013); the gold medal of honor of the Italian Chemical Society; the Ben Franklin Medal for Physics (2006) 2 Honorary doctorates (1997 and 2000) the Debye prize of the ACS, the Plyler prize of the APS and the Lippincott Award of the OSA. He is a Fellow of the APS, OSA and of the ROYAL Society of the UK and of the Royal Science Academy of the Netherlands (KNAW). He has published about 300 papers in peer reviewed journals, and has been quoted by his colleagues approximately 19.000 times, his H-index is 73, while the i10-index is 224. He has supervised about a hundred PhD students, an unusually high percentage of which now covers positions of responsibility in Academia and research.

    Abstract

    The talk will first report on a new patented method of counting CTCs based on the metabolism of tumor cells, that favors acidification of their near environment. In order to maintain the acidity produced inside the cells and communicated to the near environment (Warburg effect), we isolate each cell in a liquid pico-droplet produced in a microfluidic emulsifier. The so-produced droplets pass through a light sheet produced by a laser and the ratio of fluorescence produced at two frequencies by the SNARF dye ratiometrically measures the acidity of droplets. The first preliminary results will be shown with very limited cohort of patients, and the nature of the tumor cell found will be discussed.
    As it is well known that the Veridex apparatus only counts epithelial cells, the presence in our machine of mesenchymal cells will also be discussed. In a parallel effort carried out with much more analysis precision but much less speed of execution, namely one analysis per day, we will dissect the population of cells present in patients of breast cancer carried out within a Deparray platform.
    Four CD45neg cell subpopulations were identified: cells expressing only epithelial markers (E CTC), cells co-expressing epithelial and mesenchymal markers (EM CTC), cells expressing only mesenchymal markers (MES) and cells negative for every tested marker (NEG). CTC subpopulations were quantified as both absolute cell count and relative frequency. We have been able to assess the presence of cells pertaining to the above-described classes in every Metastatic Breast Cancer (MBC) patient in a cohort of 56 patients. Importantly, the fraction of CD45neg cells co-expressing epithelial and mesenchymal markers (EM CTC) was significantly associated with poorer PFS and OS, computed, this latter, both from the diagnosis of a stage IV disease and from the initial CTC assessment. Our work suggests the importance of dissecting the heterogeneity of CTC in MBC. Precise characterization of CTC could help in estimating both metastatization pattern and outcome, driving clinical decision-making and surveillance strategies.
     


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    FEB 24, 2021 10:00 AM PST
    C.E. CREDITS
    FEB 24, 2021 10:00 AM PST
    DATE: February 24, 2021 TIME: 10am PST Automated lab instruments such as liquid handlers and cell sorters are increasingly common in all types of laboratories, driving fast results for labor...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    DEC 03, 2020 4:30 PM PST
    C.E. CREDITS
    DEC 03, 2020 4:30 PM PST
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    APR 01, 2021 8:00 AM PDT
    C.E. CREDITS
    APR 01, 2021 8:00 AM PDT
    Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
    OCT 05, 2016 7:30 AM PDT

    Keynote Speaker: How to meet the challenge of counting and analyzing tumor cells circulating in the peripheral blood


    Specialty

    3D Culture

    Oncology

    Gene Sequencing

    Drug Discovery

    Mass Cytometry

    Cell Culture

    T-Cells

    Biotechnology

    Immunotherapeutics

    Antibodies

    Virology

    Immunology

    Dna Sequencing

    Personalized Medicine

    Clinical Diagnostics

    Geography

    North America50%

    Europe50%

    Registration Source

    Website Visitors100%

    Job Title

    Student50%

    Research Scientist50%

    Organization

    Academic Institution50%

    Other50%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more