OCT 06, 2016 7:30 AM PDT

Keynote Speaker: Reference Component Analysis of Single Cell Transcriptomes Reveals Cellular Heterogeneity in Colorectal Cancer

Speaker
  • Associate Director/Integrative Genomics and Group Leader, Genome Institute of Singapore
    Biography
      Shyam Prabhakar obtained a B.Tech in Electronics and Communications Engineering from IIT-Madras and a PhD in Applied Physics from Stanford University. He was the sole recipient of the 2001 American Physical Society thesis award in Beam Physics. As a postdoctoral fellow under Eddy Rubin at the Lawrence Berkeley National Laboratory, he led seminal studies of human evolution through gene regulatory changes. In 2007 he joined the Genome Institute of Singapore, where his group uses single-cell RNA-seq, cohort-scale ChIP-seq and other high-throughput assays to uncover molecular mechanisms and diagnostic or prognostic markers of human diseases. In parallel, the group develops computational algorithms for deriving biological insights from functional genomics data.

    Abstract

    Intra-tumor heterogeneity is a major obstacle to cancer treatment. Existing single-cell studies of intra-tumor heterogeneity have largely focused on DNA mutations; functional heterogeneity is thus less well understood. We performed an unbiased analysis of functional diversity in colorectal cancer cells and their microenvironment using RNA-seq profiling of over 1,500 unsorted single cells from 11 primary tumors and matched normal mucosa (NM). To robustly interpret single-cell transcriptomes, we developed novel algorithms for normalizing expression estimates (pQ), clustering cells (RCA) and identifying differentially expressed genes (NODES). RCA identified 6 major cell types and multiple subtypes within colorectal samples. Single-cell differential expression analysis yielded results that were substantially different from bulk-sample analysis. Notably, epithelial-mesenchymal transition (EMT) genes were upregulated in tumor fibroblasts, but not in cancer cells. Though cancer cells generally lay on a continuum of transcriptomic states, a small "tail" of cells showed exceptionally high stemness signatures. Importantly, colorectal tumors previously assigned to a single subtype based on bulk transcriptomics could be divided into subgroups with divergent survival probability based on single-cell signatures, thus underscoring the prognostic value of our approach. Going forward, we see single-cell transcriptomics becoming an essential tool for cancer biology, biomarker discovery and personalized oncology.


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    JUN 17, 2020 1:30 PM PDT
    C.E. CREDITS
    JUN 17, 2020 1:30 PM PDT
    Understanding the complex interplay between a pathogen and the host response is important to developing effective vaccines and therapeutics. The nCounter® Analysis System and GeoMx®...
    Loading Comments...
    Show Resources