MAR 22, 2018 9:00 AM PDT

Differentiation sensitizes stem-like glioblastoma tumor-initiating cells to mechanical inputs

Speaker
  • PhD candidate in the UC Berkeley - UCSF Graduate Program in Bioengineering
    Biography
      Jasmine Hughes is a PhD candidate in the UC Berkeley - UCSF Graduate Program in Bioengineering and is working in the laboratory of Professor Sanjay Kumar at the University of California, Berkeley. Jasmine is interested in how cells sense and respond to the mechanical properties of their microenvironment. She answers open questions in mechanobiology by designing and applying novel synthetic biology and systems biology tools. She is particularly interested in how mechanically-regulated signaling is perturbed in glioblastoma stem-like tumor initiating cells. Jasmine received her Bachelor's degree in Chemical Engineering from McGill University, and has been recognized for her work by the Natural Sciences and Engineering Research Council of Canada and by the Siebel Scholars Foundation. In addition to her academic pursuits, Jasmine has also played a leadership role in advancing professional development opportunities for Berkeley PhDs through the non-profit organization Beyond Academia

    Abstract

    DATE: March 22, 2018
    TIME: 09:00am PDT, 12:00pm EDT

    Mechanobiology of Glioblastoma-Initiating Cells

    Glioblastoma (GBM) is the most aggressive primary brain cancer, with nearly universal recurrence after treatment. GBMs are highly heterogeneous at the cellular level, and there is much evidence that recurrence, chemoresistance, and invasion are driven by a rare and specialized population of tumor initiating cells (TICs) within the tumor. These TICs are thought to share some similarities with stem cells in that they can both self-renew and differentiate to produce a range of cell types found in the bulk tumor. Because glioblastoma is above all a disease of tissue invasion and because invasion involves complex mechanical signaling between the microenvironment and the invading cells, we probed how TICs respond to mechanical cues. We found that in contrast to the majority of other cell types, TICs surprisingly showed very little stiffness-dependent change in cell shape and migration. Furthermore, we found that by increasing cellular force generation we could increase mechanosensitivity and extend survival in a mouse xenograft model. We next asked how the mechanosensitivity of these TICs changes as they are exposed to bone morphogenetic protein 4 (BMP4), which has been previously shown to elicit a differentiation-like effect on GBM TICs and extend survival in a xenograft model. We found that TICs treated with BMP4 showed increased stiffness-dependent changes in cell shape and reduced tissue invasion. We next performed RNA sequencing for a systems-level picture of how differentiation impacts mechanical signaling in TICs. We identified several pathways that showed mechanically-regulated changes impacted by differentiation, particularly those governing cell-extracellular matrix adhesions. These findings demonstrate that manipulation of mechanotransductive signaling can be leveraged to control tumor growth and invasion, and provide insight on alterations in mechanical signaling in stem-like and differentiated tumor initiating cells.

    Learning Objectives:

    • Understand the role of tumor initiating cells (TICs) in glioblastoma (brain) cancers
    • Learn how the sensitivity of TICs to mechanical cues at the transcriptomic level and at the phenotypic level influences tumor growth and invasion.

     


    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    DEC 02, 2020 8:00 AM PST
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    MAR 18, 2021 8:00 AM PDT
    C.E. CREDITS
    MAR 18, 2021 8:00 AM PDT
    DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
    MAR 22, 2018 9:00 AM PDT

    Differentiation sensitizes stem-like glioblastoma tumor-initiating cells to mechanical inputs


    Specialty

    Cancer Research

    Cell Biology

    Molecular Biology

    Cancer Therapeutics

    Cell Culture

    Biotechnology

    Cancer Diagnostics

    Immunology

    Biochemistry

    Genetics

    Biomarkers

    Gene Expression

    Cell Signaling / Transduction

    Oncology

    Drug Discovery

    Geography

    North America42%

    Europe22%

    Asia15%

    South America5%

    Africa5%

    Oceania1%

    Registration Source

    Website Visitors58%

    Social Media Promotions21%

    Email Promotions12%

    WAVE Newsletter Promotion6%

    Website Banners2%

    Client/Sponsor Promotions1%

    Job Title

    Student33%

    Research Scientist13%

    Educator/Faculty8%

    Post Doc7%

    Executive6%

    Medical Doctor/Specialist6%

    Medical Laboratory Technician6%

    Scientist5%

    Facility/Department Manager5%

    Lab Management4%

    Clinical Laboratory Scientist4%

    Veterinarian1%

    QC/QA1%

    Biologist1%

    Organization

    Academic Institution24%

    Research Institute10%

    Clinical Laboratory7%

    Hospital6%

    Biotech Company5%

    Medical School5%

    Government3%

    Medical Center2%

    Non-Profit Organization2%

    Life Science Company2%

    Veterinary School1%

    Ambulatory Care1%

    Pharmaceutical Company1%

    Consultant1%

    Other6%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more