MAR 16, 2017 6:00 AM PDT

Working Memory: Neurophysiological Basis, Development, and Plasticity

Presented at: Neuroscience 2017
Speakers
  • Professor, Wake Forest School of Medicine
    Biography
      Christos Constantinidis is a professor at the Wake Forest School of Medicine in Winston-Salem, North Carolina, USA. He received his Ph.D. from Johns Hopkins University, and completed postdoctoral training at Yale University. Research in his laboratory aims to understand how neuronal activity in the cerebral cortex gives rise to cognitive functions, such as working memory. Experiments in recent years have focused on the posterior parietal and dorsolateral prefrontal cortex. Simultaneous neuronal recordings from multiple micro-electrodes during performance of cognitive tasks are addressing how these areas are functionally organized and how experience and learning modifies the properties of their neurons. Neuronal activity in these areas is also monitored under at different stages of development, particularly focusing on the neural substrates of cognitive maturation between the stages of adolescence and adulthood. Computational and modeling approaches are then employed to understand the neural mechanisms that mediate complex cognitive functions such as the maintenance of a stimulus in working memory.

    Abstract:

    Working memory ability matures late in life, in adolescence or early adulthood, and may be enhanced even in adulthood through cognitive training. The mechanisms through which working memory is mediated, and how it is modified so as to mediate such cognitive changes have been a matter of debate in recent years. To address this question, my laboratory has performed a series of experiments recording neuronal activity in adolescence and adulthood, as well as before and after training on working memory tasks. Neural activity comparisons between adolescent and adulthood revealed unchanged representation of visual stimuli, increased activation during working memory, but decreased representation of distracting stimuli. After task training, more prefrontal neurons were activated by the stimuli, and increased activity was present during working memory maintenance. These results reveal the nature of changes in neural activity that underlie cognitive enhancement in development and as a result of task training.


    Show Resources
    You May Also Like
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    OCT 02, 2019 11:00 AM PDT
    OCT 02, 2019 11:00 AM PDT
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    NOV 07, 2019 10:00 AM PST
    C.E. CREDITS
    NOV 07, 2019 10:00 AM PST
    DATE: November 7, 2019TIME: 10:00am PST, 1:00pm EST Studying the pathogenesis of diabetes requires detailed analysis of the pancreatic islet microenvironment and its numerous c...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    Loading Comments...
    Show Resources