SEP 14, 2017 06:00 AM PDT

A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: taxonomic and evolutionary considerations

C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Professor, Institute of Plant Science and Resources, Okayama University
    Biography
      Nobuhiro SUZUKI serves as a full professor of the Institute of Plant Stress and Resources, formerly Research Institute for Bioresouces at Okayama University and Editors for the plant and fungal virus section of Virus Research, Frontiers in Virology and the Journal of General Plant Pathology. He has been Guest Editors to PLoS Pathogens, PNAS, and mBio, and Board Members of Virology and Journal of Virology. Currently he is working on virus/host interactions using several different pathosystems involving fungal and plant viruses. Prior to coming to Kurashiki, Okayama Prefecture, he was a visiting fellow of the Center for Agricultural Biotechnology at the University of Maryland Biotechnology Institute for four years (1997-2001) to study molecular biology of hypoviruses in the laboratory of Professor Donald L. Nuss. Before visiting UMBI, he served as an assistant professor and a lecturer of the Biotechnology Institute at the Akita Prefectural College of Agriculture for 11 years (1988-1998) where he conducted a project on molecular characterization of rice dwarf phytoreovirus, a member of the family Reoviridae. He received awards from the Japanese Phytopathological Society of Japan and Japanese Society for Virology for his outstanding achievements in plant virology. Dr Suzuki received his M. S. (1985) in phytopathology and Ph. D (1989) in virology from Tohoku University in Sendai, Japan.

    Abstract:

    A rapidly growing number of viruses of lower eukaryotes have been reported in the past few decades. These have enhanced our understanding of virus evolution and diversity. Simultaneously, some unusual viruses have challenged or broken the “common rules” of viruses in sizes and concepts. One such virus group includes the so called dsDNA megaviruses isolated from amoebae that exceed some bacterial parasites in coding capacity and particle size. Other unusual viruses have been found in fungi that include “naked” or “capsidless” RNA viruses unable to form virus particles, exemplified by hypoviruses and narnaviruses. Also among them are fungal multi-segmented dsRNA viruses that are infectious viruses as naked dsRNA. My laboratory also had an opportunity to discover such a virus from an important plant pathogenic fungus, Rosellinia necatrix. The fungus is a filamentous ascomycete that causes white root rot in diverse perennial crops. A mixed viral infection was found in a hypovirulent strain of R. necatrix. Co-infecting viruses were termed Yado-kari virus 1 (YkV1) with a positive strand (+) RNA genome of approximately 6 kb and Yado-nushi virus 1 (YnV1) with a double-stranded (ds) RNA genome of approximately 9 kb. “Yado” in Japanese literally means home or house, while “kari” and “nushi” refer to “borrower” and “owner,” respectively. Herewith, we show unique mutualistic interactions representing a new virus lifestyle: a capsidless (+) RNA virus, YkV1, hosted by a dsRNA virus YnV1. According to our proposed model (Zhang et al., Nat Microbiol, 2016), YnV1 is an independent virus able to complete its replication cycle like other dsRNA viruses, while YkV1 diverts YnV1 CP as the replication sites where trans-encased YkV1 RdRp synthesizes its own RNA as if it were a dsRNA virus. Furthermore, YkV1 was shown to enhance YnV1 accumulation. Some data with site-directed mutagenesis of available infectious YkV1 cDNA supported the model. This model still needs to be further validated by biochemical analysis with purified heterocapsids. There may be similar mutualistic interactions in other fungi such as Aspergillus foetidus (Kozlakidis et al., 2013; Nerva et al., 2016; Osaki et al., 2016). We propose the family Yadokariviridae that accommodates YkV1 and these related viruses. Their evolutionary implication and comparisons with subviral molecules similar to YkV1 will be discussed in this presentation. 


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    NOV 18, 2019 08:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    NOV 18, 2019 08:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: November 18, 2019TIME: 8:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    OCT 02, 2019 11:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    OCT 02, 2019 11:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: October 2, 2019TIME: 11:00am PDT, 2:00pm EDT Ditch the Excel spreadsheets and manage your molecular workflows entirely in your LIMS Achieve configuration of molecular workf...
    AUG 13, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 13, 2019 09:00 AM PDT
    DATE: August 13, 2019TIME: 9:00am PT, 12:00pm ET, 5:00pm BST Molecular complexes are major constituents of cells, hence unraveling their mechanisms is key to fuller comprehension of c...
    Loading Comments...
    Show Resources