FEB 14, 2019 6:00 AM PST

The NIH Microphysiological Systems Program

C.E. Credits: RACE
Speaker
  • Associate Director for Special Initiatives Office of the Director National Center for Advancing Translational Sciences, National Institutes of Health
    Biography
      Dan Tagle is associate director for special initiatives at NCATS. He also recently served as acting director of the NCATS Office of Grants Management and Scientific Review and currently serves as executive secretary to the NCATS Advisory Council and Cures Acceleration Network Review Board. Prior to joining NCATS, Tagle was a program director for neurogenetics at the National Institute of Neurological Disorders and Stroke (NINDS), where he was involved in developing programs concerning genomics-based approaches for basic and translational research in inherited brain disorders. Prior to joining NINDS in 2001, Tagle was an investigator and section head of molecular neurogenetics at the National Human Genome Research Institute and has been involved in the highly collaborative effort toward the positional cloning of genes for Huntington's disease, ataxia-telangiectasia and Niemann-Pick disease type C. He has served on numerous committees and advisory boards, including the editorial boards of the journals Gene and the International Journal of Biotechnology. Tagle obtained his Ph.D. in molecular biology and genetics from Wayne State University School of Medicine in 1990. He was an NIH National Research Service Award postdoctoral fellow in human genetics in the laboratory of Francis S. Collins, M.D., Ph.D., at the University of Michigan. Tagle has authored more than 150 scientific publications and has garnered numerous awards and patents.

    Abstract

    Approximately 30% of drugs have failed in human clinical trials due to adverse reactions despite promising pre-clinical studies, and another 60% fail due to lack of efficacy. The NIH Tissue Chips program is developing alternative approaches for more reliable readouts of toxicity or efficacy during drug development. Tissue chips are bioengineered microphysiological systems utilizing chip technology and microfluidics that mimic tissue cytoarchitecture and functional units of human organs. These microfabricated devices are useful for modeling human diseases, and for studies in precision medicine and environment exposures.

    Learning Objectives:

    1. Overview of the NIH Tissue Chips or Microphysiological Systems program as predictive tools for safety and efficacy studies
    2. Learn about diversity of various platforms being used and future initiatives using this technology
     


    Show Resources
    You May Also Like
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    NOV 10, 2020 7:00 AM PST
    C.E. CREDITS
    NOV 10, 2020 7:00 AM PST
    DATE: November 10, 2020 TIME: 7:00am PDT, 10:00am EDT Automation can provide tremendous benefits such as increased pipetting precision and accuracy, productivity, and throughput. Numerous wo...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    FEB 14, 2019 6:00 AM PST

    The NIH Microphysiological Systems Program

    C.E. Credits: RACE

    Specialty

    Animal Research

    Animal Models

    Animal Sciences

    Animal Behavior

    Life Science

    Immunology

    Research

    Veterinary Sciences

    Lab Animals

    Gene Expression

    Animals

    Health

    Molecular Biology

    Cell Biology

    Brain

    Geography

    Europe84%

    North America9%

    Asia2%

    Registration Source

    Website Visitors98%

    Job Title

    Research Scientist18%

    Medical Laboratory Technician16%

    Student13%

    Post Doc13%

    Medical Doctor/Specialist11%

    Scientist9%

    Clinical Laboratory Scientist4%

    Executive4%

    Animal Care Lab Technician4%

    Educator/Faculty2%

    Veterinarian2%

    Lab Management2%

    Organization

    Academic Institution49%

    Hospital19%

    Research Institute9%

    Clinical Laboratory4%

    Industrial Company4%

    Contract Research Organization (Cro)4%

    Government/public2%

    Pharmaceutical Company2%

    Ambulatory Care2%

    Other2%


    Show Resources
    Loading Comments...
    Show Resources
    Attendees
    • See more