Long read sequencing of the 16S-23S rRNA operon to characterize gut microbial changes associated with multiple sclerosis

C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

The microbiome has emerged as a major contributor to human health and disease. Numerous sources implicate shifts in the gut microbiome as potentially pathologic for a variety of autoimmune diseases. For many of these diseases, changes in the microbiome are subtle and descriptive in nature. Further, limitations in 16S rRNA sequencing make inter-study comparisons and identification of causative microbes difficult. This heterogeneity can be traced to the evolution of sequencing technology and variability in sampling methodology. For example, in multiple sclerosis, numerous research groups have described shifts in gut microbes among patients, but identified taxa have been inconsistent across studies. To address these challenges, we have implemented long-amplicon sequencing of the 16S-ITS-23S rRNA operon, which, when combined with machine learning-based denoising, allows reliable taxonomic resolution down to the species and strain levels, facilitating more definitive comparison between clinical cohorts and possible identification of causative microbes. Using these technologies, we set out to study the microbiomes of new-onset treatment-naïve relapsing-remitting multiple sclerosis at baseline and post B cell depletion therapy, with healthy donors as a control group. We identify Bacteroides emerge as being enriched in the gut microbiota of MS patients. This trend reverses upon initiation of effective immunomodulatory therapy for MS. Manipulation of the gut microbiome is a putative mechanism of action by which immunomodulatory therapies may impact MS and other immune-medicated diseases. Further exploration of these phenomena may open new avenues for understanding and treating MS.

Learning Objectives:

1. Understand the pros/cons of generating and processing long-read microbiome data

2. Identify differences between the microbiome of healthy subjects and MS patients at baseline

3. Understand how immunotherapy may influence the microbiome of MS patients


Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
Loading Comments...
Show Resources