OCT 29, 2014 09:00 AM PDT

Reading and disrupting the histone code with chemical agents: making new tools to understand epigenetic methylation pathways in stem-like cancers

Speakers
  • Associate Professor, University of Victoria
    Biography
      Fraser was born in 1976, raised in Medicine Hat, Alberta, and got his start in chemistry with a B.Sc. at the University of Alberta. In 1998 he moved to warmer climes at the Scripps Research Institute in La Jolla, California to study supramolecular chemistry with Julius Rebek, Jr. After obtaining his Ph.D. at Scripps, he was a Novartis Foundation (2003) and Human Frontier Science Program (2004) post-doctoral fellow studying medicinal chemistry in the labs of Franois Diederich at the Swiss Federal Institute of Technology (ETH-Zurich). Finally returning home to western Canada, he took up his position at the University of Victoria in 2005. Frasers research program creates new chemical tools for studying and disrupting epigenetic stem cell regulation, with the goals of understanding the basic mechanism of epigenetic programming of stem cells, and of creating new treatments for the most aggressive, stem-like cancers of prostate, breast, and blood.

    Abstract:

    Post-translational methylations play central roles in epigenetic gene regulation pathways that are central to stem cell regulation. Lysine methylations are turn-on switches for hundreds of distinct protein-protein interactions among a diverse family of cell regulators called epigenetic reader proteins. In spite of their biological importance and relevance to therapeutic development, there exist few synthetic agents that can help us to study or antagonize these pathways. We have been developing chemicals that can mimic, sense, or antagonize the lysine-methylation-driven biochemistry important to healthy and disease-linked cellular processes. We have created organic macrocycles that can recognize and bind to methylated sites on proteins, including examples that disrupt methylation-driven protein-protein interactions and others that can provide a readout of a proteins methylation state. We have also targeted a family of methylation reader proteins called chromodomains, having created antagonists of the epigenetic master controller Chromobox homolog 7 (CBX7) that is a master controller of stem cell programming. We will report on the impacts of these new inhibitors on the programming of cancer cells and stem-like cancer cells, and discuss implications for developing new treatments for stem-like cancers that tend to have the most aggressive and untreatable clinical manifestations.


    Show Resources
    You May Also Like
    SEP 05, 2019 04:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 04:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    MAY 16, 2019 04:00 PM CEST
    C.E. CREDITS
    MAY 16, 2019 04:00 PM CEST
    DATE: May 16, 2019TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST The emergence of NGS is revolutionizing the microbiological sciences and transforming medicine. Deep sequencing has...
    AUG 27, 2019 09:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 09:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    JUN 19, 2019 10:00 AM PDT
    JUN 19, 2019 10:00 AM PDT
    DATE: June 19, 2019TIME: 10:00am PDT, 1:00pm EDT As we develop new methods to create more biologically relevant models for research in understanding disease etiology and in...
    JUN 05, 2019 05:00 PM CEST
    C.E. CREDITS
    JUN 05, 2019 05:00 PM CEST
    DATE: June 5, 2019TIME: 8:00am PDT, 11:00am EDT, 5:00pm CEST Eukaryotic cell cultures respond to the most subtle influence. Apart from the risk of contamination, minimal chan...
    MAR 26, 2019 02:00 PM PDT
    C.E. CREDITS
    MAR 26, 2019 02:00 PM PDT
    DATE:  March 26, 2019TIME:  2:00pm PDT, 5:00pm EDT  Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time t...
    Loading Comments...
    Show Resources