JUL 07, 2021 8:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar

The Regulation of ALC1 by TRIM33 during the DNA Damage Response

Speaker

Abstract
Date:  July 07, 2021
Time: 8:00am (PDT),  11:00am (EDT)
 
The DNA damage response is extremely crucial in maintaining genomic integrity. Failure to repair damaged DNA can result in the propagation of mutations and lesions that can contribute to tumorigenesis. The poly [ADP-ribose] polymerase (PARP), is a DNA damage response protein that is transiently recruited to sites of DNA breaks, and is involved in the signaling and recruitment of other important DNA damage response proteins. PARP is involved in the regulation of the chromatin remodeling enzyme, Amplified in Liver Cancer 1 (ALC1). ALC1 functions as a chromatin remodeler, and studies from our laboratory has shown that ALC1 interacts with the E3 ubiquitin-protein ligase, Tripartite Motif-containing 33 (TRIM33) during DDR. TRIM33 has been known to play a role in numerous biological process such as tumorigenesis, TGF-B signaling and transcriptional regulation. We have observed that TRIM33 is recruited to sites of DNA breaks after the activation of PARP, and interacts with ALC1. TRIM33-deficient cells have shown to exhibit sensitivity to DNA damage, with the subsequent and prolonged retention of ALC1 at the sites of DNA breaks. Prolonged chromatin relaxation facilitated by ALC1 leads to increased sensitivity to DNA damaging agents. This sensitivity can be overcome with the overexpression of TRIM33. Our laboratory has demonstrated that TRIM33 regulates the activity of ALC1 during DNA repair by facilitating the timely removal of ALC1 at the sites of DNA breaks, thus promoting efficient DNA repair. There is current research focus that aims to investigate the dynamics of TRIM33 and ALC1, and their interactions with other key proteins involved in DNA repair, especially those proteins that are differentially regulated.
 
Learning Objectives
 
  • Describe and understand the mechanisms of DNA Repair
  • Discuss how the PARP dependent DNA damage response pathway is regulated
  • Discuss and understand how key proteins involved in DDR including TRIM33 and ALC1 can serve as actionable targets in the treatment of certain cancer
 
 
Webinars will be available for unlimited on-demand viewing after live event.
 
 

Show Resources
You May Also Like
FEB 24, 2021 10:00 AM PST
C.E. CREDITS
FEB 24, 2021 10:00 AM PST
DATE: February 24, 2021 TIME: 10am PST Automated lab instruments such as liquid handlers and cell sorters are increasingly common in all types of laboratories, driving fast results for labor...
JAN 21, 2021 8:00 AM PST
JAN 21, 2021 8:00 AM PST
Date: January 21, 2021 Time: 8:00am (PST), 11:00am (EST) Today, critical reagent characterization is a key component in the overall workflow to establish robust ligand binding assays (e.g.,...
APR 01, 2021 8:00 AM PDT
C.E. CREDITS
APR 01, 2021 8:00 AM PDT
Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
DEC 15, 2020 10:00 AM PST
C.E. CREDITS
DEC 15, 2020 10:00 AM PST
DATE: December 15, 2020 TIME: 10:00am PST Scientists from Thermo Fisher Scientific will walk us through the world of microorganisms. They will discuss their most recent research on viruses,...
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
MAR 16, 2021 10:00 AM PDT
C.E. CREDITS
MAR 16, 2021 10:00 AM PDT
Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
Loading Comments...
Show Resources
Event Countdown
  • 0 Days
  • 0 Hours
  • 0 Minutes
  • 0 Seconds
Attendees
  • See more