Reprogrammed stem cells to study psychedelic substances

Speakers
  • Head of Research Professor of Biomedical Sciences, D'Or Institute for Research and Education (IDOR) & Institute of Biomedical Sciences Federal University of Rio de Janeiro
    Biography
      Stevens Rehen received his Bachelor's degree, Master's degree, and Ph.D. at the Federal University of Rio de Janerio in Brazil. He later completed postdoctoral training at the University of California San Diego and The Scripps Research Institute. Over the past five years, Stevens has published over 76 peer-reviewed publications. Currently, Stevens is a Full Professor at the Federal University of Rio de Janerio. Additionally, he is the Head of Research at D'Or Institute for Research and Education (IDOR) and Regional Committee Member of the Pew Latin American Program in the Biomedical Sciences

    Abstract:

    For more than four decades, restrictions on research with psychoactive drugs have slowed progress in understanding how such substances impact brain metabolism. Besides the historical restrictions, the impacts of drug exposure in human neural cells have been compromised by limitations of adequate models. I will present the effects of the β-carboline alkaloid harmine, component of the psychoactive plant tea known as “Ayahuasca”, and 5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine), found in the Sonora Desert toad, in cultures of human neural cells and brain organoids derived from induced pluripotent stem cells. Harmine increased the pool of proliferating cells, with DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase) as a target, which suggests a biological activity possibly associated with the antidepressant effects of Ayahuasca in patients with depressive disorder. Analyzing global protein expression of brain organoids exposed to 5-MeO-DMT, we found proteins broadly distributed on functional activities such as cellular protrusion formation, microtubule dynamics and cytoskeletal reorganization, which are correlated to novel dendritic spine formation. These models offer an exciting new range of opportunities to investigate the impact of psychedelics on human neural cells.           


    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    JUN 29, 2018 09:00 AM PDT
    C.E. CREDITS
    JUN 29, 2018 09:00 AM PDT
    DATE: June 29, 2018TIME: 09:00AM PDT, 12:00PM EDT There is significant epidemiological evidence to suggest that the consumption of a high-broccoli diet is associated with a r...
    JUN 26, 2018 06:00 AM PDT
    C.E. CREDITS
    JUN 26, 2018 06:00 AM PDT
    Date: June 26, 2018Time: 6:00 a.m. PDT, 9:00 a.m. EDT, 1500 CEST Today’s hematology analyzers employ various methods for enumerating platelets. These methods include: e...
    Loading Comments...