MAY 09, 2018 9:00 AM PDT

Size Matters: Accurate Detection and Phasing of Structural Variations

C.E. Credits: CEU
Speaker
  • Lead Scientific Programmer, Baylor College of Medicine
    Biography
      Dr. Fritz Sedlazeck completed his PhD in 2012 in the group of Dr. Arndt von Haeseler at the Max F. Perutz Laboratory in Vienna. After a two year postdoc, he transitioned to the lab of Dr. Michael Schatz at Cold Spring Harbor Laboratory and later to Johns Hopkins University. Since 2017 he leads his own group at the Human Genome Sequencing Centre at Baylor College of Medicine. His research focuses on developing computational methods to detect and analyse genomic variations with a focus on Structural Variations. Structural Variations are genomic events that manipulate multiple positions in a genome, which impact evolution, genomic disorders, regulation as well as play an important role in explaining multiple phenotypes.

    Abstract

    In this presentation I will describe our latest work to obtain comprehensive genomes leveraging long and linked reads. The vast majority of NGS whole-genome data covers hundreds of thousands of samples with short illumina reads, which are unable to capture the full spectrum of genetic variation and genomic complexity. Such comprehensive variation is critical to understanding the full heritability and genetic foundations of human disease. In this seminar I will present our novel alignment strategy (NGMLR) for long read data (Oxford Nanopore and PacBio) and our novel Structural Variations (SVs) caller Sniffles. These two methods improved the accuracy for both technologies enabling the accurate and easy detection of SVs. This includes also nested events that we have previously been blind to or linked events connecting genes over multiple regions.  We will discuss problems, characteristics and limitations of short reads. In addition, I will discuss the impact of these novel found SVs in cancer and other genomes with respect to RNA seq. In the end, I will highlight our current findings where we combine these long read technologies with linked reads to be able to phase SNV and SVs together to obtain a diploid genome per sample. These phased genomes are the most comprehensive representation of genomes up to date and we can now finally generate them within days. 


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    APR 07, 2020 8:00 AM PDT
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAY 08, 2020 10:00 AM PDT
    C.E. CREDITS
    MAY 08, 2020 10:00 AM PDT
    DATE: May 8, 2020 TIME: 10:00am PT, 11:00am MT, 1:00pm ET The application of next generation sequencing to interrogate immune repertoires and methods in which these highly complex dataset...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 26, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    Loading Comments...
    Show Resources
    Attendees
    • See more