MAR 17, 2016 7:30 AM PDT

Special Lecturer - NMDAR dysfunction in schizophrenia: Implications for pathophysiology and basic neuroscience

Presented at: Neuroscience
Speaker
  • Director, Division of Experimental Therapeutics, Director, Columbia Conte Center for Schizophrenia Research, Professor of Psychiatry and Neuroscience, Columbia University College of Physician
    BIOGRAPHY

Abstract

Schizophrenia (Sz) is a major mental disorder that affects ~1% of the population.  Although traditional models of Sz focused on dopaminergic dysfunction, newer models increasingly implicate glutamatergic systems, particularly N-methyl-D-aspartate receptors (NMDAR).    NMDAR models are supported by the ability of NMDAR antagonists (e.g. PCP, ketamine) to induce symptoms and neurocognitive deficits closely resembling those of Sz and by genetic and auto-immune findings. One key deficit related to NMDAR dysfunction in Sz is a failure in the generation of mismatch negativity (MMN).  Deficit in MMN generation have been extensively replicated in Sz and shown to predict functional outcome.  At the physiological level, MMN impairments are related to impaired theta (4-7 Hz) generation within somatomotor networks.  At the cognitive level, deficits in basic auditory processing contribute to impairments in phonological reading and auditory emotion recognition which, in turn, contribute to poor psychosocial function.In the visual system, NMDAR play a preferential role in non-linear gain which, in turn, particularly affects functioning of the magnocellular visual system.  Thus, consistent impairments are observed in ERP (e.g. visual P1) and fMRI response to magnocellular-biased visual static and motion stimuli, while responses to parvocellular-biased stimuli remain relatively intact.  Deficits in magnocellular function in turn lead to impairments in higher order visual information processing, including ability to detect and process facial expression.  As with auditory deficits, basic visual deficits contribute directly to social dysfunction and impaired functional outcome.  Overall patterns of dysfunction in Sz highlight the role played by NMDAR in information processing at the ensemble and network levels. 
 
Learning objectives:

  1.  Understand the role played by NMDAR in basic auditory processing and implications for schizophrenia.
  2. Understand the role played by NMDAR in basic visual processing and implications for schizophrenia

Show Resources
You May Also Like
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
SEP 17, 2021 12:00 PM CST
C.E. CREDITS
SEP 17, 2021 12:00 PM CST
Date: September 16, 2021 Time: 9:00pm (PDT), 12:00am (EDT) 3D cellular models like organoids and spheroids offer an opportunity to better understand complex biology in a physiologically rele...
OCT 20, 2021 10:00 AM PDT
C.E. CREDITS
OCT 20, 2021 10:00 AM PDT
Date: October 20, 2021 Time:10:00am (PDT), 1:00pm (EDT) As the prevalence of Diabetes continues to rise in many areas across the globe, healthcare providers continue to look for methods that...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
NOV 09, 2021 11:00 AM PST
C.E. CREDITS
NOV 09, 2021 11:00 AM PST
Date: November 09, 2021 Time: 11:00am (PDT), 02:00pm (EDT) Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term gro...
DEC 09, 2021 11:00 AM PST
C.E. CREDITS
DEC 09, 2021 11:00 AM PST
Date: December 09, 2021 Time: 11:00am (PDT), 2:00pm (EDT) The burden of antimicrobial resistance (AMR) has been acknowledged worldwide by leading health institutes. Besides the need for new...
MAR 17, 2016 7:30 AM PDT

Special Lecturer - NMDAR dysfunction in schizophrenia: Implications for pathophysiology and basic neuroscience

Presented at: Neuroscience


Show Resources
Loading Comments...
Show Resources