OCT 30, 2014 1:30 PM PDT

Structural Pathways of Cancer

Speaker
  • Head, Computational Structural Biology Group, Senior Investigator, Center for Cancer Research, National Cancer Institute
    Biography
      Dr. Ruth Nussinov is a Professor in the Department of Human Genetics, School of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel, and a Senior Principal Scientist and Principal Investigator at the National Cancer Institute. She has received her B. Sc degree in Microbiology from the University of Washington (Seattle, Washington) and her Ph.D. in Biochemistry from Rutgers University (NJ). She was a Fellow at the Weizmann Institute, and a visiting scientist at the chemistry department at Berkeley and at the Biochemistry department at Harvard. She joined the Medical School at Tel Aviv University in 1985 as an Associate Professor. In 1990 she became a Full Professor. Her association with the NIH started in 1983, first with the NICHHD and since 1985 with the NCI. Currently, she has a large group of graduate students in Tel Aviv, in collaboration with Prof. H. Wolfson, from the School of Computer Science. Additionally, she has a group at the NCI. She is an author of over 470 scientific papers. Dr. Nussinov's 1978 paper proposed the dynamic programming algorithm for RNA secondary structure prediction (e.g. in wikipedia/encyclopedia/course lectures, etc.)

    Abstract

    Structural pathways are important. They are essential to the understanding of how oncogenic mutations work and to figuring out alternative parallel pathways in drug resistant mutants. Structural pathways also help to understand the inter-relationship among linked phenomena, as in the case of inflammation and cancer. Cell biology provides a global overview of the behavior of the cell, tissue and the organism under different sets of conditions; the structures of single proteins and their coherent interactions provide insight into the dynamic changes in the proteins, such as those taking place through post-translational modifications, binding events and mutations, and into their interactions. Nonetheless, beyond the challenging construction of structural pathways, there is also a need to obtain a mechanistic insight into single proteins, their modifications, interactions and broadly, their changing landscapes. Why is insight into the dynamic landscape of single proteins important? Perceiving proteins. behavior can help to forecast allosteric transitions, and regulation, and it can help relate oncogenic mutations to their constitutive consequences. The talk will largely focus on structural pathways related to cancer, and oncogenic mutations mapped on these to figure out their mechanisms. These are some of the ways through which computational structural biology can help cancer research.


    Show Resources
    You May Also Like
    SEP 10, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 10, 2020 9:00 AM PDT
    Date: September 10, 2020 Time: 9:00am (PDT), 12:00pm (EDT) Osmolality testing is relevant throughout the entire bioprocessing workflow. As customers look to refine mAb and gene therapy workf...
    OCT 29, 2020 6:00 AM PDT
    C.E. CREDITS
    OCT 29, 2020 6:00 AM PDT
    Date: October 29, 2020 Time: 6:00am (PDT), 9:00am (EDT), Chronic inflammation can occur as a result of a combination of genetic predispositions and environmental factors. Epigenetic modifica...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    SEP 03, 2020 9:00 AM PDT
    C.E. CREDITS
    SEP 03, 2020 9:00 AM PDT
    DATE: September 3, 2020 TIME: 09:00am PT, 12:00pm ET xxx Learning Objectives: xxx Webinars will be available for unlimited on-demand viewing after live event. LabRoots is approved as a provi...
    C.E. CREDITS
    This drug development program is designed to create a family of broad-spectrum, pan-coronaviral drugs that respectively inhibit multiple key enzymes required for viral replication. By target...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    Loading Comments...
    Show Resources
    Attendees
    • See more