MENU
NOV 17, 2016 3:00 PM PST

Molecular elucidation and engineering of stem cell fate decisions

Speaker
  • Professor of Chemical and Biomolecular Engineering, Department of Bioengineering, Director of the Berkeley Stem Cell Center, University of California at Berkeley
    BIOGRAPHY

Abstract

Stem cells play critical roles in the development of organisms, as well as in the maintenance and repair of organs and tissues throughout adulthood.  Advancing our understanding of mechanisms that control stem cell behavior – in particular their two hallmark properties of self-renewal and differentiation into specialized cells – will enable these cells to be increasingly harnessed to repair tissues damaged by disease or injury.  Stem cells reside within specialized microenvironments or niches that present them with a spectrum of regulatory signals to control their behavior. In particular, the niche presents stem cells with a range of molecular cues, and it has also been become increasingly apparent that key biophysical features of the environment modulate the presentation of this biochemical information. For example, spatial and temporal variation in the presentation of cues is important information that can impact fate decisions and tissue structure. In addition, the tissue matrix can have variable bulk mechanical properties and surface topographical properties depending on how its assembled.
 
We have created several technology platforms to investigate these problems, and in particular to understand and control the differentiation of adult neural stem cells and human pluripotent stem cells into neurons. First, we are developing and harnessing optogenetics as a system to investigate how cellular signaling dynamics impact fate decisions. Second, we develop bioactive, synthetic material systems to investigate the effects of cell-matrix and cell-cell interactions on cellular function. Finally, we work towards translating the basic information that emerges from both of these efforts into safe, scaleable, fully defined, robust culture and implantation systems for stem cell based regenerative medicine efforts to treat human disease.


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUN 03, 2021 12:00 PM CST
JUN 03, 2021 12:00 PM CST
DATE: June 3, 2021 TIME: 12:00pm SGT This webinar is a virtual event that focuses on utilizing the Gibco CTS Rotea System for Cell and Gene Therapy...
MAR 18, 2021 8:00 AM PDT
C.E. CREDITS
MAR 18, 2021 8:00 AM PDT
DATE: March 18, 2021 TIME: 8:00am PDT Sequencing of bulk cells, single cells, and nuclei is opening doors in the understanding of complex biological processes....
JUL 28, 2021 8:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
C.E. CREDITS
JUL 28, 2021 8:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
Date: July 28, 2021 Time: 8:00am PDT Breast cancer is the most common form of cancer in women. It is estimated that 1 out of 8 women in the US will develop invasive breast cancer during her...
JUN 24, 2021 10:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
C.E. CREDITS
JUN 24, 2021 10:00 AM PDT
Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
Date: June 24, 2021 Time: 10:00am PDT The Chan Zuckerberg Initiative (CZI) was founded to help solve some of society’s toughest challenges— from eradicating disease and improving...
Loading Comments...
Show Resources
Attendees
  • See more