MAY 10, 2017 12:00 PM PDT

Not all variants are created equal: what went wrong in the prediction of functional effects of exomic variation

C.E. Credits: CEU
Speaker

Abstract

Many computational approaches exist for predicting the effects of amino acid substitutions from protein sequence. These are often (incorrectly) used for judging disease predisposition from individual exomic variation. Notably, all available prediction methods “top out” at about the same performance for a set of experimentally determined variant effects – regardless of the complexity of underlying algorithms or the number of protein features considered in making the prediction. We note that prediction errors likely stem from the fact that different methods are trained to recognize different patterns. Some consider protein molecular functional changes, others focus on selection pressure differences, but most aim to differentiate variation across orthologs from known severely damaging variants, e.g. those that cause monogenic disease. Regardless of the training set, however, the vast majority of these methods values evolutionary information as key contributor to the final decision.

We considered whether the protein sequence position class – rheostat or toggle – affects these predictions. The classes are defined as follows: experimentally evaluated effects of amino acid substitutions at toggle positions are binary, while rheostat positions show progressive changes. In our testing, all evaluated methods failed two key expectations: toggle neutrals were incorrectly predicted as more non-neutral than rheostat non-neutrals, while toggle and rheostat neutrals were incorrectly predicted to be different. Since many toggle positions are conserved, and most rheostats are not, predictors appear to annotate position conservation better than mutational effect. This finding can explain why predictors assign disproportionate weight to evolutionary information as an input features, as well as the field’s inability to improve predictor performance.

We thus propose that distinguishing between rheostat and toggle positions is necessary prior to attempting variant effect prediction.


Show Resources
You May Also Like
MAY 11, 2021 10:00 AM PDT
C.E. CREDITS
MAY 11, 2021 10:00 AM PDT
Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
SEP 14, 2021 7:00 AM PDT
C.E. CREDITS
SEP 14, 2021 7:00 AM PDT
Date: September 14, 2021 Time: 7am PDT, 10am EDT, 4pm CEST A conventional thermal cycler has long been a commodity product in the lab and end-point PCR techniques can be completed almost wit...
JUN 09, 2021 7:00 AM PDT
C.E. CREDITS
JUN 09, 2021 7:00 AM PDT
Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
JUL 15, 2021 9:00 AM PDT
JUL 15, 2021 9:00 AM PDT
Date: July 15, 2021 Time: 9:00am (PDT), 12:00pm (EDT) The Pisces workflow robust, easy-to-use, end-to-end multi-omics solution for highly multiplexed targeted Spatial RNA analysis. VeranomeB...
MAR 16, 2021 10:00 AM PDT
C.E. CREDITS
MAR 16, 2021 10:00 AM PDT
Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
APR 21, 2021 5:00 PM CEST
APR 21, 2021 5:00 PM CEST
Date: April 21, 2021 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Spatial Answers Trilogy - Spatial Answers in Immunology Immunology Researchers share their Spatial Discoveries in SARS-C...
MAY 10, 2017 12:00 PM PDT

Not all variants are created equal: what went wrong in the prediction of functional effects of exomic variation

C.E. Credits: CEU

Specialty

Research And Development

Earth Science

University

Research

Health

Geography

Asia100%

Registration Source

Website Visitors100%

Job Title

Medical Laboratory Technician100%

Organization

Manufacturer - Other100%


Show Resources
Loading Comments...
Show Resources