AUG 30, 2016 8:00 AM PDT

Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury

Speakers
  • Co-Founder and Chief Scientific Officer, Neurona Therapeutics, Assistant Professor, Adjunct, University of California, San Francisco, United States
    Biography
      Dr. Cory Nicholas is Chief Scientific Officer at Neurona Therapeutics. Prior to launching Neurona, Dr. Nicholas was a faculty member in the Department of Neurology at the University of California, San Francisco, where his research program was focused on elucidating the ontogeny of human cortical interneurons. Using embryonic brain development as a blueprint, Dr. Nicholas pioneered methods to derive interneuron precursors from human pluripotent stem cells and developed transplantation cell-based therapies for multiple animal models of neurological disease. He maintains an adjunct faculty appointment at the university. Dr. Nicholas's post-doctoral studies were conducted at UCSF. His pre-doctoral work at both UCSF and Stanford University investigated germ cell development from both primordial germline and pluripotent stem cells. He received his Bachelor's degree from the University of California, Berkeley. Prior to his interest in stem cell and developmental biology, Dr. Nicholas was a member of the discovery research team at Sugen, Inc.

    Abstract:
    Neuropathic pain and bladder dysfunction represent significant quality of life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhance GABAergic signaling in the brain and spinal cord. Here we look at whether transplanted MGE-like cells derived from human embryonic stem cells (hESC-MGEs) can mitigate the pathological effects of spinal cord injury. We find that six months after transplantation into injured mouse spinal cords, hESC-MGEs differentiate into GABAergic neuron subtypes and receive synaptic inputs, suggesting functional integration into host spinal cord. Moreover, the transplanted animals showed improved bladder function and mitigation of pain-related symptoms. Our results therefore suggest that this approach may be a valuable strategy for ameliorating the adverse effects of spinal cord injury.
     

    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    SEP 05, 2019 4:00 PM CEST
    C.E. CREDITS
    SEP 05, 2019 4:00 PM CEST
    DATE: September 5, 2019TIME: 7:00am PT, 10:00am ET, 4:00pm CEST PCR (Polymerase Chain Reaction) has gone through a massive evolution since its development in 1983. Besides it...
    AUG 27, 2019 9:00 AM PDT
    C.E. CREDITS
    AUG 27, 2019 9:00 AM PDT
    DATE: August 27, 2019 TIME: 9:00am PDT, 12:00pm EDT Immunotherapies targeting PD-1 or PD-L1 have proven remarkably effective for treating cancer in some patients, with considerabl...
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    FEB 26, 2020 9:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: February 26, 2020 TIME: 9:00am PST 3D cell culture and analysis and the study of organoids and spheroids are becoming more prevalent as a research method in publications as traditional...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    MAR 03, 2020 9:00 AM JST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    Loading Comments...
    Show Resources