MAR 14, 2019 11:00 AM PDT

Understanding Batten Disease Pathogenesis

Presented at: Neuroscience 2019
C.E. Credits: P.A.C.E. CE Florida CE
Speaker
  • Professor of Pediatrics, Washington University School of Medicine, St Louis
    Biography
      Dr. Cooper is a neuroscientist who has been studying the pathogenesis of Batten disease and other lysosomal storage disorders for more than 20 years. His lab is the leading international center for the morphological analysis of pathological changes in the NCLs. His lab has been involved in many international collaborations to study the efficacy of different pre-clinical interventions in these disorders, leading to several clinical trials and an approved treatment for CLN2 disease. He has not only extensively characterized multiple mouse and large animal models NCL, but also assessed the efficacy of a range of different experimental therapies, including neural stem cell grafts, gene therapy, enzyme replacement and small molecule approaches.

    Abstract

    Batten disease or the Neuronal Ceroid Lipofuscinoses (NCLss) are each the result of inherited mutations that result in lysosomal dysfunction. Some of these disorders are due to deficiencies in lysosomal enzymes, while several others are the result of deficiencies in transmembrane proteins that are either directly or indirectly important for lysosomal function. An important step towards devising therapies for these fatal disorders is the characterization of animal models of NCL. These have been generated via gene manipulation or by identifying naturally occurring mutants that bear disease-causing mutations. These models have proved invaluable both for investigating disease mechanisms and testing how to deliver experimental therapies, and for assessing their efficacy. The majority of this work has been done in mice, but larger animal species with their more brains have proved especially important. We have been characterizing the onset and progression of neuropathological changes in multiple forms of NCL. This work has included identifying which brain regions and cell types are most affected, and their contribution to disease progression. Recently we have discovered that glia become dysfunctional in multiple forms of NCL, to the extent that they appear to harm neurons. However, how this happens differs markedly between forms of NCL. We have also recently identified spinal pathology in several NCLs, which contributes to disease outcome and also needs to be targeted therapeutically. Larger animal species are proving especially well suited for translating our work, with pre-clinical enzyme replacement studies in CLN2 deficient dogs in collaboration with BioMarin leading to a successful clinical trial, and the FDA approval of Brineura being the first treatment for any form of NCL. These studies highlight the importance of defining progressive neuropathological changes in informing the effective targeting of therapeutic approaches for the NCLs.


    Show Resources
    You May Also Like
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 02, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: December 2nd, 2020 TIME: 08:00am PDT, 11:00pm EDT Bioreactors and shakers are used to cultivate microorganisms, plant, insect, and mammalian cells in different volumes. Upscaling of pr...
    OCT 08, 2020 7:00 AM PDT
    C.E. CREDITS
    OCT 08, 2020 7:00 AM PDT
    DATE: October 8, 2020 TIME: 7:00am PDT, 10:00am EDT, 4:00pm CEST How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop thinking about ho...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    DEC 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    DEC 16, 2020 8:00 AM PST
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: December 16, 2020 Time: 8:00am (PST), 11:00am (EST) Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better under...
    JUN 23, 2020 10:00 AM PDT
    C.E. CREDITS
    JUN 23, 2020 10:00 AM PDT
    DATE: June 23, 2020 TIME: 10:00am PT Human mesenchymal stromal or stem cells (MSCs)-based immunomodulation treatment has been proposed as a suitable therapeutic approach for many diseases, s...
    SEP 02, 2020 7:00 AM PDT
    C.E. CREDITS
    SEP 02, 2020 7:00 AM PDT
    DATE: September 2, 2020 TIME: 03:00pm PDT, 6:00pm EDT Spatial omics is an expanding collection of methods to examine biological molecules in their geographical context. By retaining the prec...
    Loading Comments...
    Show Resources
    Attendees
    • See more