JAN 25, 2018 8:00 AM PST

WEBINAR: Understanding Immunosuppressive Myeloid Cells and Immunotherapy using Proteome Profiler™ Arrays

Sponsored by: Bio-Techne
Speaker
  • John M, and Mary Jo Boler Assistant Professor, University of Notre Dame
    Biography
      Dr. Xin Lu develops novel insights into the genetic and molecular mechanisms of prostate tumor progression, tumor immunology and treatment resistance. He applies such knowledge to enhance the efficacy of therapeutic interventions for prostate cancer patients. Through his Ph.D. research at Princeton University and postdoctoral research at MD Anderson Cancer Center, Dr. Lu has made many contributions towards developing a mechanistic understanding and identifying therapeutic interventions for breast cancer and prostate cancer. He has published over 20 research and review articles, including the most recent publication in Nature, targeting immunosuppressive myeloid cells to enhance immunotherapy for advanced prostate cancer. His research team at University of Notre Dame and Indiana University Simon Cancer Center is actively investigating in-depth mechanisms of myeloid cell regulation and targeting in prostate cancer and other forms of malignancy including rare cancers. Dr. Lu sincerely welcomes opportunities of collaboration from both academic and industrial arenas. In this webinar presentation, Dr. Lu will discuss how he used antibody arrays to interrogate signaling changes associated with immunotherapy in animal models.

    Abstract

    DATE: January 25, 2018
    TIME:  8:00AM PST, 10:00AM CST

    Prostate cancer (PCa) is the most common noncutaneous malignancy in men in the US. A significant fraction of advanced PCa treated with androgen deprivation therapy experience relentless progression to lethal metastatic castration-resistant prostate cancer (mCRPC).  The PCa tumor microenvironment is comprised of a complex mixture of epithelial and stroma cell types engaged in multifaceted heterotypic interactions functioning to maintain tumor growth and immune evasion. We recently uncovered the important role played by myeloid-derived suppressor cells (MDSCs) to mediate tumor immune evasion in aggressive PCa.  Although, Immune checkpoint blockade (ICB) has elicited durable therapeutic responses across a number of cancer types, its impact of ICB on mCRPC has been disappointing.  This signals the need to combine mechanistically-distinct ICB agents and/or override immunosuppression in the tumor microenvironment. We created a novel embryonic stem cell (ESC)-based chimeric mouse model of mCRPC engineered with signature mutations to study the response to single and combination immunotherapy. Consonant with early stage clinical trials experience, anti-CTLA4 or anti-PD1 monotherapy failed to impact disease progression. Similarly, modest anti-tumor activity was observed with combination ICB as well as monotherapy with targeted agents including Cabozantinib (tyrosine kinase inhibitor), BEZ235 (PI3K/mTOR inhibitor), and Dasatinib (tyrosine kinase inhibitor). In contrast, mCRPC primary and metastatic disease showed robust responses to dual ICB treatment together with either Cabozantinib or BEZ235, but not with Dasatinib which impaired T cell infiltration in the tumor. Taken together, we demonstrated that an antibody cocktail targeting CTLA4 and PD1 was insufficient to generate effective anti-tumor response, but combination of ICB with targeted therapy that inactivates PI3K signaling displayed superior synergistic efficacy through impairing MDSCs in the tumor microenvironment.

    Learning Objectives:

    • Understand the role of the myeloid-derived suppressor cells in the context of PCa immune evasion
    • Understand the therapeutic impact of dual ICB and kinase inhibitor therapy on mCRPC

     

     


    Show Resources
    You May Also Like
    JAN 23, 2020 9:00 AM PST
    C.E. CREDITS
    JAN 23, 2020 9:00 AM PST
    DATE: January 23, 2020 TIME: 9:00am PST, 12:00pm EST...
    NOV 18, 2019 7:00 AM PST
    C.E. CREDITS
    NOV 18, 2019 7:00 AM PST
    DATE: November 18, 2019TIME: 7:00am PST, 11:00am EST, 4:00pm CEWT How often do you pipette in your cell culture lab every day? Usually, we do it so often that we tend stop th...
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    APR 07, 2020 8:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    DATE: April 7, 2020 TIME: 8:00am PT, 11:00am ET This webinar sets out to establish why quality control is key to robust, reliable, reproducible science. We will look at best practice criteri...
    MAR 03, 2020 9:00 AM JST
    C.E. CREDITS
    MAR 03, 2020 9:00 AM JST
    DATE: March 3, 2020 TIME: 9:00am JST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid differentiation of HSPCs at the e...
    FEB 25, 2020 9:00 AM PST
    C.E. CREDITS
    FEB 25, 2020 9:00 AM PST
    Learn about how to generate a small scale CAR-T workflow using ThermoFisher products See detailed characterization tools that can be utilized and applied in a CAR-T workflow...
    DEC 10, 2019 9:00 AM PST
    C.E. CREDITS
    DEC 10, 2019 9:00 AM PST
    DATE: December 10, 2019TIME: 9:00am PST, 12:00pm EST A major limitation in the ex vivo expansion of harvested human hematopoietic stem-progenitor cells (HSPCs) is the rapid dif...
    Loading Comments...
    Show Resources