NOV 15, 2016 9:00 AM PST

Antigen-specific, poly-functional CD4+ T cells are required for vaccine-mediated protection in tularemia

Speaker
  • Rocky Mountain Laboratories, NIAID, NIH
    Biography
      Dr. Lydia Roberts received her undergraduate degrees in Chemistry and Biochemistry from Kansas State University in 2008 followed by her PhD in Microbiology and Immunology in 2013 from the University of North Carolina- Chapel Hill. Dr. Roberts is currently a post-doctoral fellow in the laboratory of Dr. Catharine Bosio at Rocky Mountain Laboratories, NIAID, NIH.

    Abstract
    DATE: November 15, 2016
    TIME: 9:00 AM PT, 12:00 PM ET


    The virulent intracellular pathogen Francisella tularensis subsp. tularensis (Ftt) causes an acute, lethal disease called tularemia. Surviving tularemia depends on the presence of an effective adaptive immune response. However, the nature of such a response has not been elucidated. Thus, we designed in vitro and in vivo models to characterize the protective immune responses with the goal of applying these features to novel vaccines. Utilizing unlicensed vaccine strains with varying efficacy, we found that vaccinated mice lacking CD4+ T cells succumbed rapidly to Ftt challenge, surviving only 1 day longer than naïve animals. These data indicated that vaccine-mediated protection requires a pool of CD4+ T cells capable of immediately controlling Ftt replication. We found effective vaccination correlated with the presence of poly-functional CD4+ T cells producing IFN-γ, TNF-α, and IL-2 and these purified pulmonary and splenic CD4+ T cells controlled Ftt replication in vitro. To follow the antigen-specific response, we generated vaccine and Ftt strains expressing the well-characterized epitope gp61 from LCMV. Immune animals had persistent numbers of gp61-specific CD4+ T cells in their lymph nodes and spleens, whereas vaccinated, but non-immune animals did not. Therefore, we hypothesized the expansion of high avidity, antigen specific CD4+ T cells would convert a poorly efficacious vaccine to one that engenders protection. As predicted, inclusion of the gp61 epitope in both the vaccinating strain and virulent Ftt challenge strain converted a vaccine that failed evoke adequate T cell responses to one that was 100% protective. Together our work has revealed successful vaccines directed against an aggressive, highly pathogenic organism requires a large pool of high avidity, poly-functional CD4+ T cells. Moreover, the elucidation of Francisella epitopes that elicit high-avidity CD4+ T cell responses, specifically in humans, will be required for successful vaccine development

    Learning Objective 1: Learn about in vitro and in vivo immune response models to Francisella                                                 tularensis subsp. tularensis (Ftt) infection.

    Learning Objective 2: Learn how effective vaccination correlates with the presence of poly-                                                       functional CD4+ T cells.
     

    Show Resources
    You May Also Like
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    MAY 11, 2021 10:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: May 11, 2021 Time: 10:00zm PDT Your samples are some of the most valuable assets in the laboratory. After spending countless hours on extraction and preparation, your conclusions could...
    NOV 18, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 18, 2020 8:00 AM PST
    DATE: November 18, 2020 TIME: 08:00am PDT We develop and implement technologies to solve some of the major bottlenecks in biomedical research. In particular, we establish new imaging approac...
    APR 01, 2021 8:00 AM PDT
    C.E. CREDITS
    APR 01, 2021 8:00 AM PDT
    Date: April 01, 2021 Time: 8:00am (PST), 11:00am (EST) Generating therapeutic antibodies is far more challenging than obtaining antibodies that merely recognize their targets. Engineering po...
    NOV 16, 2020 8:00 AM PST
    C.E. CREDITS
    NOV 16, 2020 8:00 AM PST
    Date: November 16, 2020 Time: 8:00am (PST), 11:00am (EST) CRISPR screening has become the prime discovery tool in modern biomedical research and drug discovery. At the same time, most screen...
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    C.E. CREDITS
    JUN 09, 2021 7:00 AM PDT
    Add to Calendar Select one of the following: iCal Google Calendar Outlook Calendar Yahoo Calendar
    Date: June 9, 2021 Time: 09 June 2021, 7am PDT, 10am EDT, 4pm CEST cells with dramatic implications on the validity of past cell culture related research. The fact that at least 509 cell lin...
    MAR 16, 2021 10:00 AM PDT
    C.E. CREDITS
    MAR 16, 2021 10:00 AM PDT
    Date: March 16, 2021 Time: 10:00am (PST) Scientific progress and breakthroughs today are often too expensive for most institutions to acquire. Each year, the National Institutes of Health (N...
    Loading Comments...
    Show Resources
    Attendees
    • See more