OCT 03, 2018 01:30 PM PDT

Whole-Genome Identification of CRISPR Targets

Presented At CRISPR 2018
C.E. CREDITS: P.A.C.E. CE | Florida CE
Speakers
  • Senior Lecturer, Science and Engineering Faculty, Electrical Engineering, Computer Science, Data Science, Queensland University of Technology
    Biography
      Dr Dimitri Perrin is Lecturer in Data Science at Queensland University of Technology. Prior to joining QUT, he worked as a FPR Fellow in the Laboratory for Systems Biology (RIKEN, Japan) and as an IRCSET Marie-Curie Research Fellow with the Centre for Scientific Computing & Complex Systems Modelling (Dublin City University, Ireland) and the Department of Information Networking (Osaka University, Japan).

      His research interests are in developing new approaches to analyse, understand and optimise biomedical and social systems. His work therefore spans the areas of modelling and simulation, computational biology and bioinformatics, and data analysis. Recent projects include gene editing (CRISPR), high-resolution biomedical imaging (CUBIC), and mobile apps for health research.

      Dimitri Perrin holds a Master's Degree (Diplôme d'Ingénieur) in Computer Engineering from ISIMA (Aubière, France), a M.Sc. in Computing from Université Blaise Pascal (Clermont-Ferrand, France), and received his Ph.D. in Computing from Dublin City University (Dublin, Ireland).

    Abstract:

    Gene editing using CRISPR is a very promising technology, and it has already had a significant impact on a number of research fields. However, while CRISPR makes targeted modifications easier to achieve, designing suitable guides is not a trivial task. It is crucial to ensure both the efficiency and the safety of the selected target sites. In this presentation, we discuss how to implement relevant selection criteria into an algorithm for whole-genome detection and evaluation of candidate sites. We report on the impact of specific design rules and on results to date. We also outline outstanding computational challenges.

    Learning Objectives:

    1. Learn how to improve the efficiency of CRISPR knock-outs
    2. Understand how computational tools can accelerate gene editing projects
    3. Learn about outstanding challenges in making these tools more practical and more widely applicable


    Show Resources
    You May Also Like
    MAY 22, 2018 08:00 AM PDT
    C.E. CREDITS
    MAY 22, 2018 08:00 AM PDT
    DATE: May 22, 2018TIME: 08:00AM PDT The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that...
    MAY 03, 2018 11:00 AM PDT
    MAY 03, 2018 11:00 AM PDT
    DATE: May 3, 2018TIME: 11:00AM PDT, 2:00PM EDTWhile stress is one of the leading causes of neuropsychiatric disorders, the molecular underpinnings of how stress induces alterations in b...
    APR 27, 2018 10:00 AM PDT
    C.E. CREDITS
    APR 27, 2018 10:00 AM PDT
    DATE: April 27, 2018TIME: 10:00am PST, 1:00pm ESTGlioblastoma (GBM) and Medulloblastoma (MB) are the most common adult and paediatric brain tumours, both of which can have devastating c...
    MAY 24, 2018 09:30 AM PDT
    C.E. CREDITS
    MAY 24, 2018 09:30 AM PDT
    DATE: May 24, 2018 TIME: 9:30PM PDT The current gold standard in in vitro pre-clinical cancer treatment screening remain cell lines,...
    AUG 15, 2018 08:00 AM PDT
    C.E. CREDITS
    AUG 15, 2018 08:00 AM PDT
    DATE: August 15, 2018TIME: 08:00AM PDT, 11:00AM EDTThe failure of current chemotherapeutic strategies in the fight against cancer can be largely attributed to the occurrence of drug res...
    JUN 29, 2018 09:00 AM PDT
    C.E. CREDITS
    JUN 29, 2018 09:00 AM PDT
    DATE: June 29, 2018TIME: 09:00AM PDT, 12:00PM EDT There is significant epidemiological evidence to suggest that the consumption of a high-broccoli diet is associated with a r...
    Loading Comments...