JUN 10, 2019 8:44 AM PDT

New discovery sheds light for precision medicine in cancer

A recent study published in Cancer Research highlights findings of a molecular indicator that could provide a new way for doctors to help predict how patients will respond to certain anticancer drugs. The research comes from scientists at Université de Montreal and could pave the way for novel methods of precision medicine.

The molecular indicator is composed of a group of enzymes called SRC kinases, which work to chemically modify a tumor-suppressing protein called SOCS1.

"SOCS1 is part of a gene-regulation circuit centered around the master cell proliferation regulator p53, often called the guardian of the genome," said senior author Gerardo Ferbeyre, a biochemist from Université de Montreal. "If p53 or another protein in its network is mutated or becomes chemically modified in some abnormal way, a pattern of gene activation occurs that programs cells to proliferate without control, as occurs in cancers."

This may sound complex (it is), but what it means is that the authors discovered another way in which p53 can become unbalanced, which results in the proliferation of cancer cells. This discovery will help predict if an anticancer drug could be an effective treatment for a patient’s tumor.

Subburaj Ilangumaran, a Université de Sherbrooke biochemist on the study, explained: "This new mechanism for SOCS1 inactivation may actually represent a regulatory control that is hijacked by cancer cells. On a more fundamental level, our group's discovery -- that phosphorylation of SOCS1 acquires a new physical form -- opens the door to hitherto unknown ways of regulating SOCS1 functions. And this has implications for the treatment of autoimmune diseases and for anticancer immunity."

This discovery could pave the way for new methods of precision medicine in cancer. Photo: Pixabay

UdeM PhD student Emmanuelle Saint-Germain added, "We were able to detect phosphorylated SOCS1 in patients' samples with an antibody that we developed. The same antibody could be used to detect phosphorylated SOCS1 in a clinical setting, providing a way to decide whether SRC kinase inhibitors would be an effective treatment."

Sources: Science Daily, Cancer Research

About the Author
BA Environmental Studies
Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
AUG 29, 2022
Health & Medicine
US-Funded Research to be Open Access by 2026 Under New Federal Guidance
AUG 29, 2022
US-Funded Research to be Open Access by 2026 Under New Federal Guidance
If you have ever done research for school or work, or simply been curious about a scientific finding and wanted to read ...
SEP 05, 2022
Cancer
A Look at Occupational Cancers on Labor Day
SEP 05, 2022
A Look at Occupational Cancers on Labor Day
Today marks Labor Day in the United States, an annual celebration of the American workforce and its contribution to the ...
OCT 06, 2022
Chemistry & Physics
2022 Nobel Prize in Chemistry
OCT 06, 2022
2022 Nobel Prize in Chemistry
It’s that time of year again! Three scientists, Carolyn R. Bertozzi, Morten Meldal, and K. Barry Sharpless, were a ...
OCT 12, 2022
Plants & Animals
Mediterranean Diet Improves Immunotherapy Response in Advanced Melanoma Patients
OCT 12, 2022
Mediterranean Diet Improves Immunotherapy Response in Advanced Melanoma Patients
The Mediterranean diet has been popularized in recent years for its wide-ranging health benefits. Among the many health ...
NOV 09, 2022
Genetics & Genomics
Want to Study Copy Number Alterations in Cells? Bring MACHETE
NOV 09, 2022
Want to Study Copy Number Alterations in Cells? Bring MACHETE
Sure, MACHETE is a cool name, but the researchers that developed the technique are hoping people don't focus solely on t ...
NOV 28, 2022
Clinical & Molecular DX
Study Indicates that Breast Cancer Recurrence Could be Predicted Using a MicroRNA Biomarker
NOV 28, 2022
Study Indicates that Breast Cancer Recurrence Could be Predicted Using a MicroRNA Biomarker
MicroRNAs are small (between just 21 and 23 nucleotides), non-coding RNA molecules. They are involved in the post-transc ...
Loading Comments...