MAY 29, 2020 8:48 AM PDT

What can we do about drug-induced tetraploidy in cancer cells?

A paper published in the journal Trends in Cancer describes how cancer therapies sometimes fuel genetic changes in cells that lead to resistance. During this process, rogue cells grow in size, significantly expanding the number of chromosomes the cell should have. This phenomenon is of obvious concern to oncologists. Daruka Mahadevan, MD, PhD, has spent the last 20 years investigating this, and reports on a potential method for deterring it with co-author Gregory C. Rogers, Ph.D. Mahadevan is a professor and chief of the Division of Hematology-Oncology in the Long School of Medicine at UT Health San Antonio. 

"When you give therapy, some cells don't die," explained Dr. Mahadevan. "These cells don't die because they've acquired a double complement of the normal chromosomes plus other genetic changes. Many types of chemotherapy actually promote this."

Photo: Pixabay

The paper explains that these cells can have up to 8, 16, or even 32 times the number of chromosomes found in healthy cells. The authors say that two specific genes, c-Myc and BCL2, drive the genetic changes in the tetraploid cells. c-Myc and BCL2 are known to play a role in "double-hit" high-grade lymphomas, which are incurable.

"These genes are part of the problem because when they are present, they help the lymphoma cells to live longer and prime them to become large cells with treatment," said Mahadevan."It's a double hit, a double whammy."

These tetraploid cells will eventually result in cancer recurrence. As the authors write, “Drug-induced tetraploidy (DIT) in cancer cells is not only a mechanism of inherited drug resistance; proliferating DIT cells can produce progeny with increased ploidy or aneuploid genomes that drive aggressive disease.”

In response to this phenomenon, Mahadevan and Rogers have identified a small-molecule inhibitor that could prevent or treat DIT in cancer cells. The idea is that such a drug, once developed, could be used in concordance with chemotherapies to prevent large cell resistance.

Sources: Trends in Cancer, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUN 07, 2021
Cancer
Inflammatory-rich diet associated with greater risk of developing breast cancer
JUN 07, 2021
Inflammatory-rich diet associated with greater risk of developing breast cancer
A breakthrough study soon to be presented at NUTRITION 2021 LIVE ONLINE later this week reports that women who main ...
JUN 21, 2021
Cancer
Analyzing breast implant topography and associated immune responses
JUN 21, 2021
Analyzing breast implant topography and associated immune responses
In an effort to understand how breast implants influence the immune system, researchers from MIT have led an analysis to ...
JUL 08, 2021
Genetics & Genomics
Is It Possible to Prevent Leukemia in Down Syndrome Patients?
JUL 08, 2021
Is It Possible to Prevent Leukemia in Down Syndrome Patients?
Children with Down syndrome have a significantly higher likelihood myeloid leukemia occurring in the first five years of ...
JUL 23, 2021
Cancer
Repurposed Antibiotics Show Promise Against Skin Cancer
JUL 23, 2021
Repurposed Antibiotics Show Promise Against Skin Cancer
In experiments with mice, researchers from the Netherlands have found that some antibiotics may be effective in tre ...
AUG 17, 2021
Clinical & Molecular DX
Delays in Breast Cancer Diagnoses Among Black Women
AUG 17, 2021
Delays in Breast Cancer Diagnoses Among Black Women
Thanks to breakthrough diagnostic technologies, we can now catch the early warning signs of breast cancer much faster th ...
OCT 12, 2021
Immunology
Cancer Drug Helps Alzheimer's Mice Remember
OCT 12, 2021
Cancer Drug Helps Alzheimer's Mice Remember
What if a drug—specifically developed to treat one disease—had the potential to address other non-related co ...
Loading Comments...