MAY 29, 2020 8:48 AM PDT

What can we do about drug-induced tetraploidy in cancer cells?

A paper published in the journal Trends in Cancer describes how cancer therapies sometimes fuel genetic changes in cells that lead to resistance. During this process, rogue cells grow in size, significantly expanding the number of chromosomes the cell should have. This phenomenon is of obvious concern to oncologists. Daruka Mahadevan, MD, PhD, has spent the last 20 years investigating this, and reports on a potential method for deterring it with co-author Gregory C. Rogers, Ph.D. Mahadevan is a professor and chief of the Division of Hematology-Oncology in the Long School of Medicine at UT Health San Antonio. 

"When you give therapy, some cells don't die," explained Dr. Mahadevan. "These cells don't die because they've acquired a double complement of the normal chromosomes plus other genetic changes. Many types of chemotherapy actually promote this."

Photo: Pixabay

The paper explains that these cells can have up to 8, 16, or even 32 times the number of chromosomes found in healthy cells. The authors say that two specific genes, c-Myc and BCL2, drive the genetic changes in the tetraploid cells. c-Myc and BCL2 are known to play a role in "double-hit" high-grade lymphomas, which are incurable.

"These genes are part of the problem because when they are present, they help the lymphoma cells to live longer and prime them to become large cells with treatment," said Mahadevan."It's a double hit, a double whammy."

These tetraploid cells will eventually result in cancer recurrence. As the authors write, “Drug-induced tetraploidy (DIT) in cancer cells is not only a mechanism of inherited drug resistance; proliferating DIT cells can produce progeny with increased ploidy or aneuploid genomes that drive aggressive disease.”

In response to this phenomenon, Mahadevan and Rogers have identified a small-molecule inhibitor that could prevent or treat DIT in cancer cells. The idea is that such a drug, once developed, could be used in concordance with chemotherapies to prevent large cell resistance.

Sources: Trends in Cancer, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JAN 12, 2021
Cancer
The frightening association between oral sex and HPV-related cancers
JAN 12, 2021
The frightening association between oral sex and HPV-related cancers
New research published recently in the online edition of CANCER, a peer-reviewed journal of the American Cancer Soc ...
JAN 20, 2021
Genetics & Genomics
Mutations in One Gene Can Lead to Cancer in Different Ways
JAN 20, 2021
Mutations in One Gene Can Lead to Cancer in Different Ways
Cancer and genetics are linked; for example, when a cell's genome accumulates mutations it can begin to divide uncon ...
JAN 31, 2021
Cancer
Exploring porphyrins as drug delivery agents
JAN 31, 2021
Exploring porphyrins as drug delivery agents
New research published in the journal Scientific Reports analyzes the delivery capabilities of porphyrins in order ...
MAR 05, 2021
Cancer
Can bone marrow recover post-chemotherapy?
MAR 05, 2021
Can bone marrow recover post-chemotherapy?
New research stemming from Osaka University reports identifying the mechanism by which hematopoietic stem and progenitor ...
MAR 09, 2021
Cancer
Chinese Americans face high barriers for cancer screening
MAR 09, 2021
Chinese Americans face high barriers for cancer screening
A study recently published in the Asian Pacific Journal of Cancer Prevention reports that Chinese Americans are fac ...
MAR 24, 2021
Cancer
What toxic chemicals are lurking in your couch?
MAR 24, 2021
What toxic chemicals are lurking in your couch?
New research published in the journal Environment International suggests a weekend trip to the nearest furniture st ...
Loading Comments...