APR 06, 2016 6:27 AM PDT

Hydrogel Bubble Mimics a Tumor Microcosm

WRITTEN BY: Xuan Pham
Tumor hydrogel bubble provides testing ground for anticancer drugs
Using a gelatin-based hydrogel mix, scientists from Queensland University of Technology (QUT) can model a cancer microenvironment in a small gel bubble. These tiny ‘gems’ can be infused with different tumor cells to model patient-specific tumors. Moreover, this tumor microcosm can be the testing ground for anticancer drugs, which could enable personalized therapy and cut down the time a selected treatment takes effect in the patient.
 
Key to this technique is the process of making the hydrogel bubbles. "Hydrogel is a biomaterial used by thousands of researchers around the globe; gelatine is based on collagen, one of the most common tissues in the human body. We have modified the gelatine to engineer 3D tumour microenvironments," said Dietmar Hutmacher, Professor at QUT and senior study author.
 
 

Though the substance is not new, the team found innovative ways to manufacture the hydrogel on a large scale while keeping costs low. To the hopeful researchers, this means widespread use of such system to model cancer in reproducible and meaningful ways. "It is highly reproducible which means we have been able to produce this hydrogel hundreds of times, not just once or twice in the lab, so researchers worldwide will be able to create it," said Hutmacher. The hydrogel can also be modified to replicate the density of different tissues, including firm cartilage or soft breast tissues.
 
Once infused with patient-derived tumor cells, the hydrogel bubble becomes a live, 3-dimensional model of cancer growth. Unlike mouse ‘avatars’ or other animal model of cancer, the hydrogel model is cheaper and faster to produce. As such, the team proposes that more anticancer therapies can be tested on these 3D constructs, which will better inform clinicians on the treatments for their patients.
 
"Instead of the sometimes hit and miss chemotherapy that affects every cell in the body this will allow us to test different anti-cancer drugs and different combinations of them all at once so that we can pinpoint an individualized treatment that will hit only the cancer cells,” said Hutmacher.
 
He estimates that the hydrogel model will “cut the process of finding a personalized treatment for each patient down to a week or two." Optimistic as he may be, they have yet to report on results from animal studies, which are needed to confirm the utility of their proposed constructs. 

Additional source: QUT press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
SEP 13, 2021
Cancer
Fat Loss can Predict Gastric Cancer Survival
SEP 13, 2021
Fat Loss can Predict Gastric Cancer Survival
Cancer cachexia is a metabolic disorder in cancer patients experiencing uncontrolled weight loss.  While cancer cac ...
OCT 07, 2021
Cell & Molecular Biology
Color-Changing Slides Improve Accuracy in Cancer Diagnosis
OCT 07, 2021
Color-Changing Slides Improve Accuracy in Cancer Diagnosis
When cancer is diagnosed, a sample has to be taken from a patient, treated, and analyzed. Researchers have now modified ...
OCT 18, 2021
Cancer
The History of Immunotherapy: Toxins, Targets & T Cells
OCT 18, 2021
The History of Immunotherapy: Toxins, Targets & T Cells
Cancer immunotherapy, a treatment that directly enhances a patient’s immune system, is typically perceived as a mo ...
NOV 05, 2021
Cancer
The Labroots 2021 Cancer Research and Oncology Virtual Event Poster Winner
NOV 05, 2021
The Labroots 2021 Cancer Research and Oncology Virtual Event Poster Winner
Every year, Labroots hosts an exciting series of Virtual Events that focus on various scientific topics. These virtual m ...
NOV 23, 2021
Clinical & Molecular DX
Scientists Enter Uncharted Territory of the Cancer Genome, Emerge Victorious
NOV 23, 2021
Scientists Enter Uncharted Territory of the Cancer Genome, Emerge Victorious
Cancer is a genetic disease—it stems from specific changes in the DNA sequences of the cancer cell genome. Over th ...
JAN 06, 2022
Cancer
Breakthrough COVID Cases Cause Concern for Cancer Patients
JAN 06, 2022
Breakthrough COVID Cases Cause Concern for Cancer Patients
As we enter the third year of the COVID-19 pandemic, we continue to learn more about the respiratory virus leading to a ...
Loading Comments...