APR 29, 2016 11:39 AM PDT

3D NuRD Complex Related to Cancer Progression

WRITTEN BY: Kara Marker
When the equilibrium of gene regulation is disrupted, whether by random mutation, ultraviolet light exposure, or another cause, the risk of abnormal cell division and tumor growth drastically increases. A new study from the University of Leicester describes a way to restore equilibrium and reduce incidence of genetic diseases.
 
MTA1, RBBP4, and HDAC1 are core protein components of a complex called NuRD, which is responsible for regulating the amount of protein made from transcription and translation processes. When these core proteins’ interactions are inhibited or communication is misconstrued, the complex falls out of equilibrium and diseases can sprout and progress.
 
The NuRD Complex

NuRD regulates gene expression through the control and maintenance of chromatin, the genetic material that forms chromosomes inside eukaryotic cell nuclei (Nature). Chromatin allows for DNA to be organized into tightly-wound complexes called histones, which then form nucleosomes. This highly-ordered structure is dependent on consistency and accuracy, so when one brick is out of place, the whole system struggles to function properly.
 
In hopes to both understand the three-dimensional structure of the NuRD complex proteins as well as characterize their molecular nature, University of Leicester researchers studied images using electron microscopy. Their results were recently published in the journal eLIFE.
 
HDAC1 and MTA1 are known to exist at high levels in some incidences of cancer, and studying the interaction between these proteins as well as the relationship between MTA1 and RBBP4 in cancer patients and healthy patients could give the researchers a clue on how to protect disease-preventing equilibrium.
 
Electron microscopy showed an “extensive interface” between MTA1 and RBBP4. The three-dimensional images also showed a “repression complex” in cases where equilibrium was disrupted from NuRD complex-related activity. Specifically, the findings showed a second recruitment site within MTA1 for RBBP4, not known to exist before this study. Based on the different combinations of conformations between the three core proteins, the complexes are able to bind to different histones at different times. Understanding the components of this repression complex and the entire “architecture” of the NuRD complex will help scientists identify which mechanisms they should be targeting as a treatment option.
 
“An understanding [of] the exact mechanism by which the NuRD complex assembles and functions could make it an attractive target for developing novel and specific anti-cancer therapeutics and treatment for a range of genetic diseases,” said University of Leicester’s Dr. Christopher Millard.
 
Now that the University of Leicester research team has developed a more complete model of the NuRD complex, they can move on to understanding what goes wrong in NuRD signaling in cases of cancer or genetic diseases.
 
 
Sources: University of Leister, eLIFE
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
OCT 21, 2019
Cancer
OCT 21, 2019
Don't Combine Breast and Gyno Surgery, Study Advises
Surgeries can be stressful and difficult for patients, and it’s understandable that some would want to reduce the number of days they need to devote...
OCT 21, 2019
Health & Medicine
OCT 21, 2019
Does Cuttlefish Ink Hold a Cure for Cancer?
Using nanoparticles to deliver cancer-fighting compounds directly into tumors has been a hot research topic for the past few years. According to Lisa Ayga...
OCT 21, 2019
Drug Discovery & Development
OCT 21, 2019
Treating Drug-Resistant Acute Lymphoblastic Leukemia
New therapeutics may have helped improve survival rates for acute lymphoblastic leukemia patients but some patients still remain unresponsive to existing t...
OCT 21, 2019
Cancer
OCT 21, 2019
Treating glioblastomas through the bloodstream
New research published in Nature Communications details a novel immunotherapy that is capable of treating brain cancer via the bloodstream. Although only p...
OCT 21, 2019
Cancer
OCT 21, 2019
Blood test to predict prostate cancer
A study published recently in the Journal of Urology details the results from a new type of blood test that is capable of diagnosing prostate cancer. The i...
OCT 21, 2019
Cancer
OCT 21, 2019
New hope for mesothelioma treatment
Mesothelioma is a very rare kind of malignant tumor that is caused by inhaled asbestos fibers and forms in the lining of the lungs, abdomen or heart. While...
Loading Comments...