APR 29, 2016 11:39 AM PDT

3D NuRD Complex Related to Cancer Progression

WRITTEN BY: Kara Marker
When the equilibrium of gene regulation is disrupted, whether by random mutation, ultraviolet light exposure, or another cause, the risk of abnormal cell division and tumor growth drastically increases. A new study from the University of Leicester describes a way to restore equilibrium and reduce incidence of genetic diseases.
 
MTA1, RBBP4, and HDAC1 are core protein components of a complex called NuRD, which is responsible for regulating the amount of protein made from transcription and translation processes. When these core proteins’ interactions are inhibited or communication is misconstrued, the complex falls out of equilibrium and diseases can sprout and progress.
 
The NuRD Complex

NuRD regulates gene expression through the control and maintenance of chromatin, the genetic material that forms chromosomes inside eukaryotic cell nuclei (Nature). Chromatin allows for DNA to be organized into tightly-wound complexes called histones, which then form nucleosomes. This highly-ordered structure is dependent on consistency and accuracy, so when one brick is out of place, the whole system struggles to function properly.
 
In hopes to both understand the three-dimensional structure of the NuRD complex proteins as well as characterize their molecular nature, University of Leicester researchers studied images using electron microscopy. Their results were recently published in the journal eLIFE.
 
HDAC1 and MTA1 are known to exist at high levels in some incidences of cancer, and studying the interaction between these proteins as well as the relationship between MTA1 and RBBP4 in cancer patients and healthy patients could give the researchers a clue on how to protect disease-preventing equilibrium.
 
Electron microscopy showed an “extensive interface” between MTA1 and RBBP4. The three-dimensional images also showed a “repression complex” in cases where equilibrium was disrupted from NuRD complex-related activity. Specifically, the findings showed a second recruitment site within MTA1 for RBBP4, not known to exist before this study. Based on the different combinations of conformations between the three core proteins, the complexes are able to bind to different histones at different times. Understanding the components of this repression complex and the entire “architecture” of the NuRD complex will help scientists identify which mechanisms they should be targeting as a treatment option.
 
“An understanding [of] the exact mechanism by which the NuRD complex assembles and functions could make it an attractive target for developing novel and specific anti-cancer therapeutics and treatment for a range of genetic diseases,” said University of Leicester’s Dr. Christopher Millard.
 
Now that the University of Leicester research team has developed a more complete model of the NuRD complex, they can move on to understanding what goes wrong in NuRD signaling in cases of cancer or genetic diseases.
 
 
Sources: University of Leister, eLIFE
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUN 14, 2021
Health & Medicine
Another Benefit of Aspirin: Decreased Colorectal Cancer Risk When Started Early
JUN 14, 2021
Another Benefit of Aspirin: Decreased Colorectal Cancer Risk When Started Early
Valued for stroke and heart attack prevention, aspirin is also recommended for colorectal cancer prevention. A Harv ...
JUN 11, 2021
Cell & Molecular Biology
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
JUN 11, 2021
Bad Fat in the Tumor Microenvironment May Disrupt Killer T Cells
The immune system can detect and destroy pathogenic and cancerous cells, but sometimes those dangerous cells can evade t ...
SEP 16, 2021
Cancer
Inspiring Hope during Childhood Cancer Awareness Month
SEP 16, 2021
Inspiring Hope during Childhood Cancer Awareness Month
Childhood cancers, also known as pediatric cancers, are diagnosed in patients up to 14 years old.  Estimates for 20 ...
SEP 23, 2021
Immunology
Enhanced Hamster Cells as Super Drug Factories
SEP 23, 2021
Enhanced Hamster Cells as Super Drug Factories
Antibodies are highly specialized proteins produced by the immune system that stick on to foreign invaders in the body w ...
SEP 27, 2021
Cell & Molecular Biology
Optical Imaging in Tissue with Near-Infrared Dyes
SEP 27, 2021
Optical Imaging in Tissue with Near-Infrared Dyes
Optical Imaging in Tissue with Near-Infrared Dyes Written By Christopher Pratt, PhD   Go Long to See Deeper Imaging ...
OCT 09, 2021
Cell & Molecular Biology
The Anti-Cancer, Copper-Binding Compounds Found in Fish
OCT 09, 2021
The Anti-Cancer, Copper-Binding Compounds Found in Fish
In the world's waterways, fish are confronted with endless challenges. For example, they have to defend themselves from ...
Loading Comments...