JUL 27, 2016 5:56 AM PDT

Scientists Create Triple-Lethal Patch to Annihilate Cancer

WRITTEN BY: Xuan Pham
Recent research estimate that tumors receive less than 1 percent of the nanomedicine that’s delivered systemically. Thus, a big hurdle in cancer treatment is effectively localizing anticancer drugs directly to the tumor. Now researchers at the Massachusetts Institute of Technology (MIT) say they they’ve found a solution to this problem in the form of a supercharged adhesive drug patch that sticks to the tumor.
 
The patch is a triple threat, delivering anticancer medicine, and gene and light-based therapy – all working in combination to destroy cancer cleanly and completely.

Patch delivers drug, gene, and light-based therapy to tumors | Image: Ella Maru
 
Earlier this year, another group, also from MIT, developed a similar chemotherapy patch system for pancreatic cancer. This time around, instead of being polymer-based, the patch is made of a popular biocompatible and biodegradable hydrogel material. And in addition to delivering chemotherapy drugs, the patch also contains two other mechanisms designed to kill any residual cancer cells left over from surgery.
 
The primary component of the patch are gold nanorods that pack chemotherapy drugs and respond to infrared light radiation. In the presence of radiation, the rods heat up and release their drug load. Physical heat itself is also an effective way to destroy the cancer tissues. The researchers also incorporated into the patch gold nanospheres that release RNA particles that silence a common cancer-causing gene in colorectal cancer. The combination of these three tactics make this patch an impressive triple combination therapy.
 
But the most important aspect of the patch may be its ability to localize the attack on the cancer. "This means that we are treating both the source of the cancer -- the tumor -- and the metastases resulting from that source, in a suboptimal manner," Artzi says. "That is what prompted us to think a little bit differently, to look at how we can leverage advancements in materials science, and in particular nanotechnology, to treat the primary tumor in a local and sustained manner."
 

In addition to killing the cancer more completely, the patch would also reduce the side effects of chemotherapy on healthy cells – a “collateral damage” process some patients and doctors have come to accept to be part of cancer treatment. Indeed, if chemotherapy drugs can be localized, toxicity to nearby organs and tissues could be minimized or even avoided.
 
In experiments with a mouse model of colorectal cancer, the team showed the triple-therapy patch in combination with surgery provided far superior outcomes compared to surgery alone. Mice treated only with tumor removal showed higher incidences of the cancer returning.
 
The team also hopes the anticancer effects of the patch can be enough for some types of cancer, especially those that are caught early. In such cases, the patch could be applied in a minimally invasive manner to shrink the tumor over time, which could save patients from more risky operations. "Local application of the triple therapy could thus improve patients' quality of life and therapeutic outcome," said Natalie Artzi, MIT scientist, assistant professor of medicine at Brigham and Women's Hospital, and senior study lead.

Additional source: MIT press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 14, 2019
Cancer
NOV 14, 2019
Specific gut bacteria linked to bowel cancer
New research suggests that the presence of a certain kind of gut bacteria can increase the risk of bowel cancer by as much as 15%. The research is importan...
NOV 16, 2019
Cancer
NOV 16, 2019
Understanding H. pylori and gastric cancer
New research published in the journal Gastroenterology offers insight on gastric cancer and the presence of the common bacteria known as H. pylori (Helicob...
NOV 18, 2019
Genetics & Genomics
NOV 18, 2019
Evaluating the Genetic Damage Caused by Cancer Treatments
Now that we know more about the impact of some cancer treatments, they can be applied optimally....
DEC 21, 2019
Cancer
DEC 21, 2019
Processed meats containing nitrites linked to cancer
Since 2015, when the World Health Organization (WHO) classified processed meats as Group 1 carcinogens, science has supported the idea that these foods pos...
JAN 11, 2020
Genetics & Genomics
JAN 11, 2020
Single Cells Carry 'Forests' of Chromatin
Researchers are learning more about how every human cell organizes and packages about two meters of DNA....
JAN 20, 2020
Technology
JAN 20, 2020
Open-Source Software Judges The Accuracy of Cancer Predicting Computer Programs
Cancers are generally composed of diverse cells that vary in genetics—these variations often make a particular cancer more susceptible or resistant t...
Loading Comments...