SEP 16, 2016 6:49 AM PDT

Four-Stranded DNA Turns Cancer Genes On and Off

WRITTEN BY: Xuan Pham
In school most of us are taught that DNA is arranged as a double helix. The discovery of this basic structure, after all, is what earned James Watson and Francis Crick the Nobel Prize in 1962.
 
But as it turns out, DNA exists in other forms as well – one of the most intriguing ones being the quadruple helix. And though this form has been known for a while, it’s only been recent that researchers at the University of Cambridge found a convincing link between the existence of these odd helices and its potential to be targets for cancer therapies.

Square-shaped DNA helices abundant in cancer genes | Image: Balasubramanian Lab
The quadruple DNA helices are quite unique in the human genome. Instead of the iconic twisted helix of conventional DNA, these quadruple helix, also known as G- quadruplexes, are square-shaped. They’re so named because these structures are most abundant in Guanine-rich regions of the genome. Scientists can easily create these structures in the lab in the right conditions. However, G-quadruplexes also exist naturally in our cells – discovered in 2013 by Shankar Balasubramanian's team, who happen to also lead the current expedition in G-quadruplexes and cancer.
 
Balasubramanian and the G-quadruplexAt the time, Balasubramanian’s team had no idea what the function of G-quadruplexes could be. However, they did suspect something highly regulated. "There have been a number of different connections made between these structures and cancer, but these have been largely hypothetical," said Balasubramanian, the paper's senior author. "But what we've found is that even in non-cancer cells, these structures seem to come and go in a way that's linked to genes being switched on or off."
 
That G-quadruplexes can influence whether genes are turned on or off is reminiscent of epigenetic markers on our genome. Furthermore, the team also observed that G-quadruplexes primarily occur in the promoter regions of genes associated with cancer, such as MYC – a well-characterized oncogene.
 
"What we observed is that the presence of G-quadruplexes goes hand in hand with the output of the associated gene," said Balasubramanian.
 
The connections seem to be staring at the researchers in the face: G-quadruplexes could very well regulate the expression of cancer genes. And knowing how the mechanism behind these molecules could provide a powerful way to target cancer.
 

"We've been looking for an explanation for why it is that certain cancer cells are more sensitive to small molecules that target G-quadruplexes than non-cancer cells," said Balasubramanian. "One simple reason could be that there are more of these G-quadruplex structures in pre-cancerous or cancer cells, so there are more targets for small molecules, and so the cancer cells tend to be more sensitive to this sort of intervention than non-cancer cells.
 
"It all points in a certain direction, and suggests that there's a rationale for the selective targeting of cancer cells."

Additional sources: University of Cambridge, MNT
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUN 22, 2021
Cancer
Evaluating adverse effects of induction therapy for neuroblastoma
JUN 22, 2021
Evaluating adverse effects of induction therapy for neuroblastoma
A study published in the Journal of Clinical Oncology reports an evaluation of the chemotherapy treatment given to child ...
JUL 08, 2021
Genetics & Genomics
Is It Possible to Prevent Leukemia in Down Syndrome Patients?
JUL 08, 2021
Is It Possible to Prevent Leukemia in Down Syndrome Patients?
Children with Down syndrome have a significantly higher likelihood myeloid leukemia occurring in the first five years of ...
JUL 22, 2021
Cell & Molecular Biology
Cancer Cells in the Lab Aren't Like Cancer Cells in the Body
JUL 22, 2021
Cancer Cells in the Lab Aren't Like Cancer Cells in the Body
To study biology, researchers need models. Once those models might have been a bit limited to organisms like rats or mic ...
OCT 21, 2021
Cancer
Exercise: A Secret Weapon to Combat Prostate Cancer?
OCT 21, 2021
Exercise: A Secret Weapon to Combat Prostate Cancer?
Exercise oncology is an evolving science that considers the addition of physical activity regimens to the treatment ...
OCT 12, 2021
Immunology
Cancer Drug Helps Alzheimer's Mice Remember
OCT 12, 2021
Cancer Drug Helps Alzheimer's Mice Remember
What if a drug—specifically developed to treat one disease—had the potential to address other non-related co ...
OCT 26, 2021
Immunology
Two Different Arms, Twice the Cancer-Killing Potential?
OCT 26, 2021
Two Different Arms, Twice the Cancer-Killing Potential?
Our immune system has developed an arsenal of sophisticated molecular weapons to defend us against the continuous barrag ...
Loading Comments...