NOV 01, 2017 3:05 PM PDT

Study Uncovers 27 New and Rare Cancer-Fighting Genes

WRITTEN BY: Xuan Pham

Image credit: Pixabay.com

A systematic survey of over 2200 tumors has revealed 27 new cancer-fighting genes that could help patients battle the disease and win.

The genetics of cancer is a tangled, complicated mess that invariably involves multiple genes and pathways. But at its most basic core, cancer genetics can be understood in terms of cancer-promoting genes (oncogenes) and cancer-fighting genes (tumor suppressor genes).

Oncogenes are those involved in cell growth and division, proliferation, or the avoidance of cell death. When these genes are mutated or become expressed at abnormally high levels, it allows a cell to grow and divide with reckless abandon – a key hallmark of cancer.

By contrast, tumor suppressor genes act to stop cells from becoming cancerous, as the name implies. These genes are usually involved at critical checkpoints in the cell cycle. Under normal conditions, these genes prevent cells from dividing endlessly and trigger cell death when appropriate. However, when these gatekeeper genes pick up inactivating mutations, cancer can take over.

Unlike oncogenes, tumor suppressor genes generally need mutations on both copies for the gene to go rogue. This “two-hit” hypothesis explains why some tumor suppressor genes can still protect against cancer invasion even when one copy of the gene is deleted.

To search for tumor suppressor genes, researchers from the Francis Crick Institute in the United Kingdom had to develop a new statistical model that can distinguish if one or both copies of a gene has been inactivated in cancer – a challenging feat since tumors contain a mix of genetic profiles that can obscure the hunt.

When tested in over 2200 tumor samples across 12 human cancer types, the team found 96 genetic hotspots for tumor suppressor gene deletion. In these regions, they identified 43 tumor suppressor genes, 27 of which were rare and new.

"Our study demonstrates," said Peter Van Loo, the study’s senior author, "that rare tumor suppressor genes can be identified through large-scale analysis of the number of copies of genes in cancer samples."

"Cancer genomics is a growing area of research, and the computational tools we use are a powerful way to find new genes involved in cancer," he adds.

Researchers hope the new information can be leveraged to find new targets against cancer, one of the most devastating health burdens across the globe. According to National Cancer Institute, over 1.6 million new cases of cancer were diagnosed in 2016. And of that, nearly 600,000 will succumb to the disease. Given such odds, the discovery of new and rare cancer-fighting genes couldn’t have come at a more urgent time.

"Using this powerful toolkit, we've uncovered rare tumor suppressor genes that when lost in mutated cells, cause cancer. This could pave the way for the development of personalized cancer treatments,” said Jonas Demeulemeester, a study co-author.

Additional sources: MNT

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUN 14, 2021
Cell & Molecular Biology
Can An Omega-3 Fatty Acid Destroy Tumors?
JUN 14, 2021
Can An Omega-3 Fatty Acid Destroy Tumors?
The body needs fatty acts for a variety of functions, and the health benefits of taking fatty acid supplements have long ...
AUG 07, 2021
Cancer
New Drug Combo Eliminates Pancreatic Cancer in Mice
AUG 07, 2021
New Drug Combo Eliminates Pancreatic Cancer in Mice
A combination of three immunotherapy drugs can eliminate pancreatic tumors in mice. The study was published in Canc ...
AUG 17, 2021
Clinical & Molecular DX
Delays in Breast Cancer Diagnoses Among Black Women
AUG 17, 2021
Delays in Breast Cancer Diagnoses Among Black Women
Thanks to breakthrough diagnostic technologies, we can now catch the early warning signs of breast cancer much faster th ...
SEP 23, 2021
Immunology
Enhanced Hamster Cells as Super Drug Factories
SEP 23, 2021
Enhanced Hamster Cells as Super Drug Factories
Antibodies are highly specialized proteins produced by the immune system that stick on to foreign invaders in the body w ...
SEP 27, 2021
Cell & Molecular Biology
Optical Imaging in Tissue with Near-Infrared Dyes
SEP 27, 2021
Optical Imaging in Tissue with Near-Infrared Dyes
Optical Imaging in Tissue with Near-Infrared Dyes Written By Christopher Pratt, PhD   Go Long to See Deeper Imaging ...
OCT 14, 2021
Clinical & Molecular DX
Cancer-Sniffing Worms: The Future of Diagnostics?
OCT 14, 2021
Cancer-Sniffing Worms: The Future of Diagnostics?
Researchers have unlocked a way of sniffing out cancer in patients with very-early-stage pancreatic cancer. This time, i ...
Loading Comments...