MAR 20, 2014 12:00 AM PDT

ctDNA shows promise as non-invasive cancer biomarker

WRITTEN BY: Jen Ellis
According to the American Cancer Society, cancer will occur in more than 1.6 million individuals this year in the United States alone. However, a clinically proven circulating biomarker that can help guide the management of cancer patients is available for only a minority of them-even in cases of widespread metastasis. In fact, the development of a non-invasive method for detecting and monitoring tumors is one of the major challenges facing oncology today. A recent study published in the journal Science Translational Medicine, provides strong evidence that circulating tumor DNA (ctDNA) may help meet that challenge.(1)

The study, by Bettegowda et al, demonstrated that even early-stage tumors in many different organs shed ctDNA fragments into the bloodstream. Furthermore, these ctDNA fragments can be identified in a sample of the patient's blood and could potentially have broad application as a sensitive, specific, and non-invasive biomarker to screen for early-stage cancers, monitor responses to treatment, and provide insights into why some cancers are resistant to therapy.

To see how well ctDNA was able to detect tumors in patients with different types of cancers, the investigators used digital polymerase chain reaction (PCR) to analyze blood samples from 640 patients. They found that ctDNA was detectable in over 75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than half of the patients with primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73% of patients with colorectal cancer, 57% of patients with gastroesophageal cancer, 48% of patients with pancreatic cancer, and 50% of patients with breast adenocarcinoma. ctDNA was often present in patients without detectable circulating tumor cells (CTCs), suggesting that these two biomarkers are distinct entities.

In a separate panel of 206 patients with metastatic colorectal cancers, the investigators studied the sensitivity of ctDNA for detection of clinically relevant KRAS mutations, which are involved in the development of many types of cancers. Their results showed that the sensitivity of ctDNA for these mutations was 87.2%, with a specificity of 99.2%.

The presence of ctDNA was also assessed to see if it could provide insights into the mechanisms that underlie resistance to epidermal growth factor receptor (EGFR) blockade. In 24 patients who objectively responded to therapy, but then relapsed, 96% developed one or more mutations in genes involved in the mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway regulates gene expression and cell survival and may help cancer cells thrive.

According to the authors of the paper, "these studies provide a wealth of information
on the potential utility, as well as the limitations, of ctDNA measurements for the assessment of patients with various cancers." Further research is required to fully determine the clinical utility of ctDNA as a biomarker, but this study provides a solid foundation to build on.

REFERENCE
Bettegowda C, Sausen M, Leary RJ, et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 6, 224ra24 (2014).
About the Author
You May Also Like
NOV 23, 2019
Cancer
NOV 23, 2019
Can lithium heal damage from radiation?
Research suggests that lithium could play a role in minimizing the negative effects of radiation on the brain. The research was published in Molecular Psyc...
DEC 02, 2019
Cancer
DEC 02, 2019
Self-renewing blood stem cells give hope for blood disease treatments
New research details how activating a certain protein may be the key to getting hematopoietic stem cells (HSCs) to self-renew. The research comes from scie...
DEC 18, 2019
Cancer
DEC 18, 2019
Looking to this tropical plant for future pancreatic cancer treatments
Pancreatic cancer is a dangerous disease for two reasons: its stealth and its resistance to many anti-cancer drugs. The American Cancer Society estimates t...
JAN 20, 2020
Genetics & Genomics
JAN 20, 2020
Epigenetic Changes Make Breast Cancer Cells Drug Resistant
Researchers have found that changes in the structure of the genome in breast cancer cells can make them resistant to drug therapies....
JAN 21, 2020
Cancer
JAN 21, 2020
A gene for leukemia triggers the growth of stem blood cells
New research from the University of Colorado Cancer Center has identified a way to make hematopoietic stem cells from a gene that causes a type of leukemia...
JAN 27, 2020
Genetics & Genomics
JAN 27, 2020
Finding Cancer-Promoting Genes Using Machine Learning
Machine learning algorithms are increasingly being applied to the vast amount of genetic data that has been generated over the past decade....
Loading Comments...