APR 16, 2018 06:00 PM PDT

Similarities and Differences between Stem Cells and Cancer Cells Creates "Stemness" Index

WRITTEN BY: Mauri Brueggeman
2 2 141

For decades, stem cells have fascinated scientists and been the subject of a multitude of debates about use and application.  One of the foremost features of embryonic stem cells is that they differentiate into whatever tissue or cell type is needed.  That is the biological development process for animals during the embryonic stages as well as during an animal’s lifespan.  Part of that growth and development process is embryonic stem cell signaling to induce rapid replication.  There is increasing recognition that there are distinct parallels that can be drawn between the rapid growth and development in embryonic stem cells and the cancer progression process. 

A few groups of researchers have been studying stem cells and tumor cells to identify cellular mechanism similarities and differences between stem cells, cancer cells, and mature cells.  Further, one group outlined what they call, “Stemness” to create an index of stem cell-like features that can indicate oncogenic dedifferentiation, cancer aggressiveness, and potential drug targets for therapeutic approaches.

One group, published February 2018 in the Royal Society of Chemistry Journal Analyst, recently completed an analysis of the roles and presence or absence of cellular macromolecules like lipids, proteins, carbohydrates, and nucleic acids in stem cells, somatic cells, and cancer cells.  Their efforts were designed to inform the scientific understanding of similarities and differences in cellular mechanisms between these cell types for research and be applicable in the clinical treatment setting.  They found, for example, that cancer cells contain the lowest level of lipids and have short lipid acyl chains compared to murine embryonic stem cells which had long lipid chains.  Interestingly, they also noted that normal cells had low nucleic acid and glycogen amounts but higher lipid amounts.  Cancer cells had the highest cellular growth rate which aligned with their high nucleic acid and higher glycogen levels.  These are the puzzle pieces needed for energy and replication.

Another study, published April 5, 2018 in The Cell, focused on the loss of the differentiated phenotype as part of cancer progression.  The authors found that this dedifferentiation leads to more “progenitor and stem cell like features”.  The group started by defining “stemness” as the potential for self-renewal and differentiation from the cell of origin.  The authors said, “An increasing number of genomic, epigenetic, transcriptomic, and proteomic signatures have been associated with cancer stemness.  These molecular features are causally connected to particular oncogenic signaling pathways that regular transcriptional networks that sustain the growth and proliferation of cancer cells.”  The group utilized the work of The Cancer Genome Atlas (TCGA), discussed in another LabRoots article, to help build a one-class logistic regression (OCLR) machine learning algorithm to analyze cancer stemness in the TCGA’s 12,000 samples of 33 tumor types.  The result was two distinct stemness indices.  The first was reflective of epigenetic features of DNA called mDNA stemness index (mDNAsi); the second was reflective of gene expression and called mRNA stemness index (mRNAsi).  The associations between the stemness indices included oncogenic pathways, somatic alternations, tumor heterogeneity, and microRNA networks.  These features correlated with cancer stemness.  The group also correlated stemness indices with tumor pathology and were predictive of clinical outcome.  According to the authors, both mDNAsi and mRNAsi were the lowest in normal cells, increased in primary tumors, and highest in metastases.  This is consistent with scientific knowledge of cancer progression. 

This work contributes to the broader goals of creating better tools and analyses for patient prognosis, treatment planning, and potential new developments in predictive biomarker identification for cancer recurrence, treatments, and monitoring. 

Sources: The Cell, Royal Society of Chemistry Journal Analyst, Genome Biology, Nature,

About the Author
  • Mauri S. Brueggeman is a Medical Laboratory Scientist and Educator with a background in Cytogenetics and a Masters in Education from the University of Minnesota. She has worked in the clinical laboratory, taught at the University of Minnesota, and been in post secondary healthcare education administration. She is passionate about advances and leadership in science, medicine, and education.
You May Also Like
APR 10, 2018
Cancer
APR 10, 2018
Use of an App to Engage Patients and Increase Colorectal Cancer Screening Compliance
A new study reports that the use of a Colorectal Cancer Screening iPad App helped to increase the number of patients that engaged in their healthcare and complied with CRC screening.
MAY 29, 2018
Cancer
MAY 29, 2018
Potential New Treatment to Block the Mechanism for Cancer Metastasis
A new treatment developed by collaborators, called metarrestin, blocks metastatic cancer cells' ability to make proteins and spread through a mechanism in the perinucleolar compartment.
MAY 29, 2018
Genetics & Genomics
MAY 29, 2018
A Pair of Genomes is Best
Researchers have now learned more about why cells that have improper numbers of chromosomes, which will help cancer research.
JUN 05, 2018
Cancer
JUN 05, 2018
Clinical Trial Evaluates Precision Medicine Approaches for Common and Rare Cancers
The NCI-MATCH Phase II Clinical Trial is evaluating results of cancer treatments administered based on genetic profiles determined through molecular diagnostic testing.
JUN 19, 2018
Earth & The Environment
JUN 19, 2018
Does Roundup cause cancer?
Monsanto has long been the scary monster lurking in the closet, with its seed-patenting and fertilizer-pushing. Now the first case actually bringing the co
JUN 27, 2018
Immunology
JUN 27, 2018
Immune Cells Responsible for Chemo-induced Diarrhea
While studying specific immune cells in the context of chronic itching in the skin, two Washington University School of Medicine scientists discovered that
Loading Comments...