SEP 16, 2020 3:57 PM PDT

Stem Cells Can Generate a 3D Mini-Model of the Heart

WRITTEN BY: Carmen Leitch

The heart is a special organ, and while we know a lot about how it develops, there are still mysteries. That’s partly because heart development is very complex and is difficult to replicate in the laboratory. Scientists have now used stem cells to try to change that. The work has been reported in Nature Communications.  

Layers of different types of cells form the heart, which is a muscle that also contains connective tissue and a critical blood supply. In a normal, healthy heart, all of these cells work in unison to supply the body with oxygenated blood.

Stem cells are able to basically act as blank slates that can be directed to become any kind of human cell. Researchers have been able to use stem cells to create three-dimensional, miniature models of organs. Often, these so-called organoids are made of several cell types that will spontaneously assemble into structures that model a larger organ. Scientists have now used mouse embryonic stem cells to generate a three-dimensional structure that mimics the heart. Now researchers will be able to study the development of the heart, reasons why it goes wrong, and potential treatments for heart diseases including congenital heart defects.

"Despite its seemingly simple function, the heart is a complex organ with an even more complex structure," noted the corresponding study authors, Professors Jiyoung Lee and Fumitoshi Ishino of Tokyo Medical and Dental University (TMDU). "To achieve that level of structural complexity, during development the heart is exposed to a myriad of signals. We wanted to capitalize on our knowledge of the signaling molecules during heart development and generate heart organoids that resemble the developing heart more closely than current techniques."

In this work, the researchers determined that a protein called fibroblast growth factor 4 (FGF4) and a protein complex consisting of laminin and entactin (LN/ET complex), which are all known to function in embryonic heart development, would encourage the cells to form a structure that is more similar to an actual heart.

When mouse embryonic stem cells were treated with FGF4 and LN/ET, the 3D cell culture model showed structural and molecular similarities to a normal heart. They underwent changes that reflect what we know about heart development in vivo. After analyzing the heart organoids, the researchers found that all four chambers and functions of the heart were modeled.

"These are striking results that show how our method provides a biomimetic model of the developing heart using a rather simple protocol. This tool could be helpful in studying the molecular processes during heart development, and in developing and testing novel drugs against heart disease," added Lee and Ishino.


Sources: AAAS/Eurekalert! via Tokyo Medical and Dental University, Nature Communications

 

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 10, 2022
Cardiology
COVID-19 and the Heart- Insights from Cardiac Imaging
MAR 10, 2022
COVID-19 and the Heart- Insights from Cardiac Imaging
Although widespread disease prevention strategies such as vaccination have proven significantly helpful in reducing COVI ...
APR 06, 2022
Technology
Mobile App Predicts Genetic Risks for Coronary Artery Disease
APR 06, 2022
Mobile App Predicts Genetic Risks for Coronary Artery Disease
Coronary artery disease(CAD) is the most common form of heart disease, affecting about 18 million adult Americans each y ...
MAY 19, 2022
Cardiology
Death from Heart Attacks More Common in US than Other High-Income Countries
MAY 19, 2022
Death from Heart Attacks More Common in US than Other High-Income Countries
The US has a high rate of heart attack mortality compared to other high-income countries.
JUN 21, 2022
Cardiology
Sudden Cardiac Death and Genetics in Athletes
JUN 21, 2022
Sudden Cardiac Death and Genetics in Athletes
A new publication outlines recommendations for genetic testing in athletes.
JUL 26, 2022
Plants & Animals
Cocoa Could Help Reduce Blood Pressure and Arterial Stiffness
JUL 26, 2022
Cocoa Could Help Reduce Blood Pressure and Arterial Stiffness
A new study found that cocoa can reduce blood pressure and stiff arteries, but only when both are elevated. The cocoa pl ...
AUG 09, 2022
Cardiology
Frequent Naps Linked to High Blood Pressure
AUG 09, 2022
Frequent Naps Linked to High Blood Pressure
Frequent napping during the day is associated with a 12% higher risk of high blood pressure and 24% higher risk of strok ...
Loading Comments...