FEB 06, 2016 11:21 AM PST

Exploring the Anti-Diabetic Capabilities of Apples, Tea, and Ginger

WRITTEN BY: Kara Marker
Scientists from the North Carolina Agricultural and Technical State University (NC A&T) Center for Excellence in Post-Harvest Technologies published a study this month in the journal Phytomedicine examining the prevention of diabetic complications from cytotoxic compounds present in apples, tea, and ginger.
 


A compound called methylglyoxal can cause formation of advanced glycation-end products (AGEs) that become toxic to cells after reacting with amino acids. AGEs cause oxidative stress and inflammation, leading to chronic diseases like cardiovascular disease and type II diabetes (Journal of the American Dietetic Association). This reaction also exacerbates diabetes-related complications in patients who already have diabetes.
 
AGEs cause inflammation by activating various inflammatory signaling pathways that are helpful if activated in the correct context. In addition, cell surface receptors for AGEs are actually immunoglobulins expressed on many cells including macrophages, T lymphocytes, and dendritic cells (Redox Biology).
 
The NC A&T scientists together with scientists from Qatar University studied human retina epithelial cells to evaluate AGE formation and identify compounds from apples, tea, and ginger that most effectively reduce or prevent AGE formation. The polyphenols associated with apples, tea, and ginger are known to reduce the risk of cancer, hyperglycemia, and heart disease. The team from NC A&T and Qatar University focused on 8 major bioactive compounds, looking to identify the exact cytoprotective mechanisms that inhibited AGE formation.
 
They found four of the compounds to be the most cytoprotective and least cytotoxic, most effectively preventing carbonyl stress in the retinal cells:
  • (-)-epigallocatechin 3-gallate (tea)
  • Phloretin (apples)
  • 6-Gingerol (ginger)
  • 6-Shogaol (ginger)
As compared to a known therapeutic agent for reducing AGEs, aminoguanidine (AG), these four compounds effectively reduced blood glucose through promoting glucose metabolism in diabetics, showed antiglycation activity, and exhibited other unidentified anti-diabetic effects.
 
 
Source: Phytomedicine
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 02, 2021
Cardiology
Investigating a Stress Protein's Relation to Heart Failure
FEB 02, 2021
Investigating a Stress Protein's Relation to Heart Failure
As medicine advances, the world’s population gradually becomes older and older. Cardiovascular disease becomes mor ...
MAR 24, 2021
Cardiology
Supplement Can Prevent Strokes in Patients with Rare Disease
MAR 24, 2021
Supplement Can Prevent Strokes in Patients with Rare Disease
Scientists have found that it may be possible for people with a rare genetic disorder to prevent fatal strokes by taking ...
JUL 16, 2021
Technology
Echocardiogram May Help Predict COVID-19 Patients at Risk for Heart Complications
JUL 16, 2021
Echocardiogram May Help Predict COVID-19 Patients at Risk for Heart Complications
Researchers learned early on in the pandemic that COVID-19 infections caused a range of complications throughout the bod ...
JUL 22, 2021
Cardiology
Coffee Doesn't Seem to Cause Heart Arrhythmia
JUL 22, 2021
Coffee Doesn't Seem to Cause Heart Arrhythmia
There's been some debate about whether or not coffee is good or bad for the heart. Now, a very large study of human heal ...
AUG 05, 2021
Clinical & Molecular DX
Wearable Patch Senses Blood Vessel Blockages
AUG 05, 2021
Wearable Patch Senses Blood Vessel Blockages
The cardiovascular system is like a network of highways, filled with an estimated 25 trillion red blood cells that conti ...
SEP 14, 2021
Health & Medicine
The Magnitude of Cardiovascular Disease- New Insights and Ways Forward
SEP 14, 2021
The Magnitude of Cardiovascular Disease- New Insights and Ways Forward
Among healthcare professionals, it is common knowledge that cardiovascular disease is the leading cause of death in the ...
Loading Comments...