NOV 23, 2016 1:29 PM PST

"BAG3" Protein Protects the Heart From Irreparable Damage

WRITTEN BY: Kara Marker
As if a heart attack weren’t traumatic enough, the tissue injury that follows can cause irreparable damage to heart muscle, increasing an individual’s risk of heart failure occurring later. With the discovery of a new role for a known protein, though, scientists are one step closer to limiting tissue injury and reducing risk of further heart problems.
Source: The Independent
Reperfusion injury, or the “inability of cells to eliminate damaged proteins and organelles” after a coronary artery is blocked and then re-opened, either with angioplasty surgery or with drugs, creates dysfunctional organelles that lead to the release of toxic oxidizing substances when oxygen-rich blood returns to the heart. Toxic oxidizing substances activate cell death pathways and limit the rate of autophagy, a cleaning process that removes faulty proteins and organelles from the cell.

Coming to the rescue, though, is Bcl-2-associated athanogene 3 (BAG3), a protein showed in a new study to help limit reperfusion injury.  Enhancing the expression of BAG3 could prevent all of these bad things from happening, according to a new study from scientists at Temple University. New findings suggest that BAG3 could be the center of new therapeutics for reperfusion in heart attack patients.

BAG3 expression is beneficial by inactivating cell death pathways and activating autophagy, essentially reversing the negative influence of the toxic oxidizing substances produced after damage is done to the heart muscle. Scientists saw this effect in cultured cardiomyocytes during their study.

"After finding that a mutation in BAG3 caused heart failure in a Philadelphia family, we have been trying to figure out what the protein does in the heart," said senior investigator Dr. Arthur M. Feldman, MD, PhD, on how his team got to the results they found in the present study.  "Now that we have a better understanding of its role and what happens when its levels are increased, we can investigate the possibility of targeting BAG3 in human patients using gene therapy or a small molecule."

Feldman’s study was recently published in the journal JCI Insight.
 


Source: Temple University Health System
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 21, 2020
Cardiology
Why are More Young People Having Heart Attacks?
APR 21, 2020
Why are More Young People Having Heart Attacks?
Fewer and fewer people have heart attacks in the US thanks to improved lifestyle factors, such as a general reduction in ...
JUL 19, 2020
Cardiology
Common Biomarker Could Predict Heart Disease
JUL 19, 2020
Common Biomarker Could Predict Heart Disease
Heart failure is usually associated with conditions like high blood pressure and coronary artery disease. But there may ...
AUG 07, 2020
Cardiology
CT Method Can Find New Ways to Improve CPR
AUG 07, 2020
CT Method Can Find New Ways to Improve CPR
The time it takes for a person experiencing cardiac arrest to get help can make the difference between life and death.
AUG 18, 2020
Cardiology
A Key Juncture Between Diabetes and Heart Repair
AUG 18, 2020
A Key Juncture Between Diabetes and Heart Repair
Patients with diabetes are often at increased cardiovascular risk. Recent research points to a possible new target for t ...
AUG 20, 2020
Cardiology
Cilia are Found to Have Vesicles That May Influence Heart Disease
AUG 20, 2020
Cilia are Found to Have Vesicles That May Influence Heart Disease
Cells have many specialized organelles, including a kind of signaling hub called a cilium, which sticks out of the surfa ...
SEP 18, 2020
Clinical & Molecular DX
Open Your Heart to the World's Smallest Diagnostic Probe
SEP 18, 2020
Open Your Heart to the World's Smallest Diagnostic Probe
Certain health conditions require doctors to be able to observe tissues and organs in order to tell what’s wrong. ...
Loading Comments...