DEC 07, 2017 05:32 AM PST
Treating Heart Failure by Targeting a Mitochondrial Protein
WRITTEN BY: Kara Marker
3 16 736

One explanation for why heart failure develops goes all the way to the miniscule organelles inside individual cells. From Georgia State University, researchers from a new study show how one mitochondrial protein, FUNDC1, is connected to heart dysfunction and, ultimately, heart failure.

An electron micrograph image of a cell with several mitochondria surrounding the nucleus. Credit: Wikimedia User T. Voekler

Understanding FUNDC1

FUNDC1 is an outer mitochondrial membrane protein whose function has yet to be entirely explained. What scientists from the current study do know, though, is that reducing its levels in heart muscle cells, called cardiomyocytes, initiates cardiac dysfunction and makes existing dysfunction worse.

Additionally, intervention between FUNDC1’s interaction with certain protein receptors blocks the release of calcium from an organelle called the endoplasmic reticulum (ER), preventing calcium from reaching the mitochondria. This leads to a plethora of problems stemming from mitochondrial and cardiac dysfunction, ultimately resulting in heart failure.

Powerhouse of the Cell

As the infamous “powerhouses of the cell,” the mitochondria are responsible for several vital roles in the cell, and thus, in the body as a whole:

  • Energy production

  • Reactive oxygen species generation

  • Signal transduction

In the heart, mitochondria play a particularly important role, providing energy for “optimal cardiac performance.” Thus, a disruption in mitochondrial function in cardiomyocytes will always mean a disruption in heart function.

The relationship between mitochondria and the ER

Mitochondria and the ER are physically interconnected via mitochondria-associated ER membranes (MAMs). When the connections between the two are disrupted, several diseases can develop, including Alzheimer’s and Parkinson’s, but the details of how this happens are fuzzy.

In their study, Georgia State researchers used echocardiography to monitor heart function in several situations:

  • Mouse neonatal cardiomyocytes

  • Mice lacking FUNDC1 gene

  • Control mice

  • Cardiac tissues of heart failure patients

The genetically deficient mice showed several issues involved in heart function, including muscle scarring, compared to control mice.

True for human hearts too?

“The formation of MAMs mediated by the mitochondrial membrane protein FUNDC1 was significantly suppressed in patients with heart failure, which provides evidence that FUNDC1 and MAMs actively participate in the development of heart failure," explained Georgia State’s Dr. Ming-Hui Zou.

The findings from the study indicate a new potential treatment approach, rejuvenating MAMs to promote both mitochondrial and cardiac function.

Going forward, Zou said, “this work has important clinical implications and provides support that restoring proper function of MAMs may be a novel target for treating heart failure."

The present study was published in the journal Circulation.

Source: Georgia State University

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 09, 2018
Cardiology
FEB 09, 2018
Gene Editing Could Correct 3,000 Mutations Causing Muscular Dystrophy
Duchenne muscular dystrophy (DMD) is caused by defects in a gene necessary for strong muscle fibers, including the muscle in the heart. A new study from UT
MAR 09, 2018
Cardiology
MAR 09, 2018
Childhood Cancer Survivors Face Heart Disease Later in Life
Children who survive cancer are at an increased risk for heart disease in later in life, often developing heart disease nearly a decade before the average
MAR 27, 2018
Cardiology
MAR 27, 2018
Stroke Drug Reduces Potentially Dangerous Inflammation
Reducing inflammation as soon as possible after stroke symptoms begin to appear could save patients from devastating brain damage. In a new study from the
APR 25, 2018
Cardiology
APR 25, 2018
Cardiac Development Depends on the "Hippo" Pathway
The same molecular pathway that is responsible for preventing adult heart cells from regenerating after being damaged - like after a heart attack - has bee
APR 28, 2018
Cardiology
APR 28, 2018
Eating Dark Chocolate Reduces Stress, Improves Mood
We’ve heard that dark chocolate is good for us in reasonable amounts, but two unique studies from the Loma Linda University Adventist Health Sciences
MAY 03, 2018
Cardiology
MAY 03, 2018
Immune Cells and Heart Disease: Helpful or Harmful?
Depending on where an immune cell is during injury to the heart, like during a heart attack, their activity can either be harmful or helpful. From Case Wes
Loading Comments...