SEP 17, 2018 02:58 PM PDT

A Fast New Method to Make an Important Type of Brain Cell

WRITTEN BY: Carmen Leitch

Scientists have developed a better way to create astrocytes, a cell type that has been implicated in neurodegenerative diseases. This new process can generate astrocytes from embryonic stem cells in only two weeks, a significant time reduction compared to previous techniques. This work, by researchers at Sweden’s Lund University, has been reported in Nature Methods.

“This means that it is now easier than before to study the role of astrocytes in various diseases," said research leader Henrik Ahlenius.

Named for their star shape, astrocytes are glial cells, which support neurons and their environment. Their role in disorders like dementia and ALS has only been revealed in recent years, and it’s since been suggested that they do more than just maintenance work. It’s challenging to grow astrocytes in the lab, however, making them difficult to study. This work has changed that.

“Previous methods have succeeded in producing human astrocytes from embryonic stem cells, but it has taken months. Using our method, it takes one to two weeks to produce large amounts of fully functional human astrocytes,” noted Ahlenius.

Led by Ahlenius, the researchers show that by using a virus to activate certain embryonic stem cell genes, astrocytes can be created from those cells. The team found that the structure and function of their newly-made astrocytes were like those found in adult brains.

“Many researchers have previously used embryonic stem cells to generate astrocytes, but these methods have attempted to mimic the normal development of an embryo’s stem cell when developing an astrocyte in an individual, which requires a time-consuming and complicated approach,” explained Ahlenius. 

The team also tried their cells out as a disease model by applying the CRISPR/Cas9 gene editing tool. They inserted a mutation into the genome of the stem cells; the genetic error they introduced causes a brain disorder called Alexander disease. Using the newly-reported technique, those mutant or healthy control cells were changed to astrocytes. The scientists found that the mutant cells had characteristics that were similar to those found in patients.

“Using this approach of combining CRISPR/Cas9 and our method to rapidly grow human astrocytes provides improved possibilities to study the role of astrocytes in various neurological diseases,” added Ahlenius.

The scientists are interested in learning more about neurodegenerative diseases, and their future work will investigate the role of astrocytes in those disorders.

Image shows interactions between neurons (green) and astrocytes(red). / Credit: Ethell lab, UC Riverside.

Sources: Lund University, Nature Methods

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 24, 2018
Neuroscience
OCT 24, 2018
Self-Restraint And Will Power Improves Weight-Loss: Scientific Evidence
Weight loss success linked with active self-control regions of the brain...
OCT 29, 2018
Neuroscience
OCT 29, 2018
Zapping the nerves to promote nerve regeneration
Nerve regeneration by electrical stimulation...
NOV 15, 2018
Videos
NOV 15, 2018
Viewing the Interactions Between Cellular Structures
Scientists have used powerful microscopy techniques to learn more about how the dynamics of a live cell....
NOV 26, 2018
Neuroscience
NOV 26, 2018
Most Rewarding Experiences Take The Top Spot In Memory
brain filters out neutral, inconsequential events, retaining only the memories that are useful to the future decisions....
NOV 26, 2018
Neuroscience
NOV 26, 2018
Behavior Predicting Neural Code Identified
Perceptual choice behavior, taking action based on the information received from the senses is often described by mathematical models...
DEC 03, 2018
Genetics & Genomics
DEC 03, 2018
Reducing the Potential for Negative Side Effects in CRISPR
CRISPR-Cas9 is an amazing gene-editing tool, but there are some drawbacks. This work aims to fix that....
Loading Comments...