SEP 17, 2018 02:58 PM PDT

A Fast New Method to Make an Important Type of Brain Cell

WRITTEN BY: Carmen Leitch

Scientists have developed a better way to create astrocytes, a cell type that has been implicated in neurodegenerative diseases. This new process can generate astrocytes from embryonic stem cells in only two weeks, a significant time reduction compared to previous techniques. This work, by researchers at Sweden’s Lund University, has been reported in Nature Methods.

“This means that it is now easier than before to study the role of astrocytes in various diseases," said research leader Henrik Ahlenius.

Named for their star shape, astrocytes are glial cells, which support neurons and their environment. Their role in disorders like dementia and ALS has only been revealed in recent years, and it’s since been suggested that they do more than just maintenance work. It’s challenging to grow astrocytes in the lab, however, making them difficult to study. This work has changed that.

“Previous methods have succeeded in producing human astrocytes from embryonic stem cells, but it has taken months. Using our method, it takes one to two weeks to produce large amounts of fully functional human astrocytes,” noted Ahlenius.

Led by Ahlenius, the researchers show that by using a virus to activate certain embryonic stem cell genes, astrocytes can be created from those cells. The team found that the structure and function of their newly-made astrocytes were like those found in adult brains.

“Many researchers have previously used embryonic stem cells to generate astrocytes, but these methods have attempted to mimic the normal development of an embryo’s stem cell when developing an astrocyte in an individual, which requires a time-consuming and complicated approach,” explained Ahlenius. 

The team also tried their cells out as a disease model by applying the CRISPR/Cas9 gene editing tool. They inserted a mutation into the genome of the stem cells; the genetic error they introduced causes a brain disorder called Alexander disease. Using the newly-reported technique, those mutant or healthy control cells were changed to astrocytes. The scientists found that the mutant cells had characteristics that were similar to those found in patients.

“Using this approach of combining CRISPR/Cas9 and our method to rapidly grow human astrocytes provides improved possibilities to study the role of astrocytes in various neurological diseases,” added Ahlenius.

The scientists are interested in learning more about neurodegenerative diseases, and their future work will investigate the role of astrocytes in those disorders.

Image shows interactions between neurons (green) and astrocytes(red). / Credit: Ethell lab, UC Riverside.

Sources: Lund University, Nature Methods

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 28, 2018
Cell & Molecular Biology
JUL 28, 2018
Self-organizing Synthetic Tissues are Getting More Complex
All the structures in the body arise from a fertilized cell, and scientists are learning more about how that happens....
JUL 30, 2018
Cell & Molecular Biology
JUL 30, 2018
A Complete View of the Fly Brain at Nanoscale Resolution
Researchers have completed a massive project to create a high-resolution map of the adult fruit fly brain....
JUL 31, 2018
Cell & Molecular Biology
JUL 31, 2018
A Brand New Geometric Shape
Cell use this shape when packing together to form structures....
AUG 04, 2018
Cell & Molecular Biology
AUG 04, 2018
Bioengineered Lung Successfully Grown and Transplanted
The complexity of human organs has made them difficult to engineer, but real progress is being made....
SEP 07, 2018
Videos
SEP 07, 2018
The Therapeutic Potential of Venoms
Over 220,000 species, around 15 percent of the world's described animals, are known to be venomous....
OCT 06, 2018
Drug Discovery
OCT 06, 2018
New Class of Drugs for Breast Cancer Therapy
Scientists at Stevens Institute of Technology have designed a new class of molecules that may hold the potential to add to the arsenal of drugs actively be...
Loading Comments...